# constructible sheaf

1

**Constructible sheaf**— In mathematics, a constructible sheaf is a sheaf of abelian groups over some topological space X, such that X is the union of a finite number of locally closed subsets on each of which the sheaf is a twisted constant sheaf. It is a generalization …2

**Constructible set (topology)**— For a Gödel constructive set, see constructible universe. In topology, a constructible set in a noetherian topological space is a finite union of locally closed sets. (A set is locally closed if it is the intersection of an open set and closed… …3

**Perverse sheaf**— The mathematical term perverse sheaves refers to a certain abelian category associated to a topological space X , which may be a real or complex manifold, or a more general stratified space, usually singular. This concept was introduced by Joseph …4

**Étale cohomology**— In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil… …5

**Local system**— In mathematics, local coefficients is an idea from algebraic topology, a kind of half way stage between homology theory or cohomology theory with coefficients in the usual sense, in a fixed abelian group A , and general sheaf cohomology which,… …6

**List of important publications in mathematics**— One of the oldest surviving fragments of Euclid s Elements, found at Oxyrhynchus and dated to circa AD 100. The diagram accompanies Book II, Proposition 5.[1] This is a list of important publications in mathematics, organized by field. Some… …7

**List of mathematics articles (C)**— NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …8

**D-module**— In mathematics, a D module is a module over a ring D of differential operators. The major interest of such D modules is as an approach to the theory of linear partial differential equations. Since around 1970, D module theory has been built up,… …9

**Verdier duality**— In mathematics, Verdier duality is a generalization of the Poincaré duality of manifolds to spaces with singularities. The theory was introduced by Jean Louis Verdier (1965), and there is a similar duality theory for schemes due to Grothendieck.… …10

**mathematics, foundations of**— Scientific inquiry into the nature of mathematical theories and the scope of mathematical methods. It began with Euclid s Elements as an inquiry into the logical and philosophical basis of mathematics in essence, whether the axioms of any system… …