Painlevé transcendents

In mathematics, Painlevé transcendents are solutions to certain nonlinear second-order ordinary differential equations in the complex plane with the Painlevé property (the only movable singularities are poles), but which are not generally solvable in terms of elementary functions. They are named for the French mathematican (and prime minister) Paul Painlevé who found them around 1900.

History

Painlevé transcendents have their origin in the study of special functions, which often arise as solutions of differential equations, as well as in the study of isomonodromic deformations of linear differential equations. One of the most useful classes of special functions are the elliptic functions. They are defined by second order ordinary differential equations whose singularities have the Painlevé property: the only movable singularities are poles. This property is shared by all linear ordinary differential equations but is rare in nonlinear equations. Poincare and L. Fuchs showed that any first order equation with the Painlevé property can be transformed into the Weierstrass equation or the Riccati equation, which can all be solved explicitly in terms of integration and previously known special functions. Émile Picard pointed out that for orders greater than 1, movable essential singularities can occur, and tried and failed to find new examples with the Painleve property. (For orders greater than 2 the solutions can have moving natural boundaries.) Around 1900, Paul Painlevé studied second order differential equations with no movable singularities. He found that up to certain transformations, every such equation of the form

:y^{primeprime}=R(y^{prime},y,t)

(with "R" a rational function) can be put into one of fifty "canonical forms" (listed in | year=1991 | volume=149.

The Painlevé equations are all reductions of the self dual Yang-Mills equations.

References

*springer|id=p/p110040|title=Painlevé-type equations|first=M. |last=Ablowitz
*Citation | last1=Ablowitz | first1=M. J. | last2=Clarkson | first2=P. A. | title=Solitons, nonlinear evolution equations and inverse scattering | publisher=Cambridge University Press | series=London Mathematical Society Lecture Note Series | isbn=978-0-521-38730-9 | id=MathSciNet | id = 1149378 | year=1991 | volume=149
*citation|first=J.|last= Chazy |title=Sur les équations différentielles dont l'intégrale générale possede un coupure essentielle mobile|journal= C.R. Acad. Sci. |place=Paris|volume= 150 |year=1910|pages= 456-458
*citation|first=J.|last= Chazy |title=Sur les équations différentielles de troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixés|journal= Acta Math.|volume= 33 |year=1911|pages= 317-385
*Citation | editor1-last=Conte | editor1-first=Robert | title=The Painlevé property | publisher=Springer-Verlag | location=Berlin, New York | series=CRM Series in Mathematical Physics | isbn=978-0-387-98888-7 | id=MathSciNet | id = 1713574 | year=1999
* "See sections 7.3, chapter 8, and the Appendices"
*Citation | author1-link=Athanassios S. Fokas | last1=Fokas | first1=Athanassios S. | last2=Its | first2=Alexander R. | last3=Kapaev | first3=Andrei A. | last4=Novokshenov | first4=Victor Yu. | title=Painlevé transcendents | publisher=American Mathematical Society | location=Providence, R.I. | series=Mathematical Surveys and Monographs | isbn=978-0-8218-3651-4 | id=MathSciNet | id = 2264522 | year=2006 | volume=128
*citation|first=B. |last=Gambier |title=Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est à points critique fixés|journal= Acta. Math.|volume= 33 |year=1910|pages= 1-55|doi=10.1007/BF02393211.
*Citation | last1=Gromak | first1=Valerii I. | last2=Laine | first2=Ilpo | last3=Shimomura | first3=Shun | title=Painlevé differential equations in the complex plane | publisher=Walter de Gruyter & Co. | location=Berlin | series=de Gruyter Studies in Mathematics | isbn=978-3-11-017379-6 | id=MathSciNet | id = 1960811 | year=2002 | volume=28
*
*Citation | last1=Iwasaki | first1=Katsunori | last2=Kimura | first2=Hironobu | last3=Shimomura | first3=Shun | last4=Yoshida | first4=Masaaki | title=From Gauss to Painlevé | publisher=Friedr. Vieweg & Sohn | location=Braunschweig | series=Aspects of Mathematics, E16 | isbn=978-3-528-06355-9 | id=MathSciNet | id = 1118604 | year=1991
*Citation | last1=Nishioka | first1=Keiji | title=A note on the transcendency of Painlevé's first transcendent | id=MathSciNet | id = 931951 | year=1988 | journal=Nagoya Mathematical Journal | issn=0027-7630 | volume=109 | pages=63–67
*Citation | last1=Noumi | first1=Masatoshi | title=Painlevé equations through symmetry | publisher=American Mathematical Society | location=Providence, R.I. | series=Translations of Mathematical Monographs | isbn=978-0-8218-3221-9 | id=MathSciNet | id = 2044201 | year=2004 | volume=223
*Citation | last1=Noumi | first1=Masatoshi | last2=Yamada | first2=Yasuhiko | title=Symmetries in Painlevé equations | id=MathSciNet | id = 1816984 | year=2004 | journal=Sugaku Expositions | issn=0898-9583 | volume=17 | issue=2 | pages=203–218
*citation|first=P.|last= Painlevé |title=Memoire sur les équations différentielles dont l'intégrale générale est uniforme|journal= Bull. Soc. Math. Phys. France |volume=28 |year=1900|pages= 201-261
*citation|first=P.|last= Painlevé |title= Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme|journal= Acta Math. |volume=25 |year=1902|pages= 1-85|doi= 10.1007/BF02419020
*springer|id=P/p071080|first=N.Kh.|last= Rozov|title=Painlevé equation
*Citation | last1=Umemura | first1=Hiroshi | title=On the irreducibility of Painlevé differential equations | id=MathSciNet | id = 944888 | year=1989 | journal=Sugaku Expositions | volume=2 | issue=2 | pages=231–252
*Citation | last1=Umemura | first1=Hiroshi | title=Painlevé equations and classical functions | id=MathSciNet | id = 1365704 | year=1998 | journal=Sugaku Expositions | issn=0898-9583 | volume=11 | issue=1 | pages=77–100

External links

*dlmf|id=32
*Kanehisa Takasaki [http://www.math.h.kyoto-u.ac.jp/~takasaki/soliton-lab/chron/painleve.html Painlevé Equations]
*
*


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Paul Painlevé — Mandats 95e 115e président du Conseil des ministres français …   Wikipédia en Français

  • Paul Painlevé — Infobox Prime Minister name=Paul Painlevé order=84th Prime Minister of France term start =12 September 1917 term end =16 November 1917 president =Raymond Poincaré predecessor =Alexandre Ribot successor =Georges Clemenceau order2=92nd Prime… …   Wikipedia

  • Isomonodromic deformation — In mathematics, the equations governing the isomonodromic deformation of meromorphic linear systems of ordinary differential equations are, in a fairly precise sense, the most fundamental exact nonlinear differential equations. As a result, their …   Wikipedia

  • Charles Émile Picard — Born 24 July 1856(1856 07 24) Paris …   Wikipedia

  • List of special functions and eponyms — This is a list of special function eponyms in mathematics, to cover the theory of special functions, the differential equations they satisfy, named differential operators of the theory (but not intended to include every mathematical eponym).… …   Wikipedia

  • Complex differential equation — A complex differential equation is a differential equation whose solutions are functions of a complex variable. Constructing integrals involves choice of what path to take, which means singularities and branch points of the equation need to be… …   Wikipedia

  • List of mathematical functions — In mathematics, several functions or groups of functions are important enough to deserve their own names. This is a listing of pointers to those articles which explain these functions in more detail. There is a large theory of special functions… …   Wikipedia

  • List of mathematics articles (P) — NOTOC P P = NP problem P adic analysis P adic number P adic order P compact group P group P² irreducible P Laplacian P matrix P rep P value P vector P y method Pacific Journal of Mathematics Package merge algorithm Packed storage matrix Packing… …   Wikipedia

  • Athanassios S. Fokas — (b. June 30, 1952) is a Greek mathematician, well known in the field of integrable nonlinear partial differential equations. Fokas was born on the Greek island of Kefallonia. Academic qualifications* BSc (Aeronautics) Imperial College (1975) *… …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.