Leading edge slot

The leading edge slot is an aerodynamic feature of the wing of some airplanes to reduce the stall speed and promote good low-speed handling qualities. A leading edge slot is a span-wise gap in each wing, allowing air to flow from below the wing to its upper surface. This allows the wing to provide lift up to a higher angles of attack than would be possible without the slot. In this manner they allow flight at higher angles of attack and thus reduce the stall speed. [Kermode, A.C., "Mechanics of Flight", Chapter 3]

15° is a typical angle of attack at the stall of a basic airfoil. Modification of such an airfoil by use of a leading edge slot could increase the stalling angle to 22° to 25°. Clancy, L.J., "Aerodynamics", Section 6.9]

Slots were first developed by Handley-Page in 1919. Licensing the design became one of Handley-Page’s major sources of income in the 1920s. [ [http://www.centennialofflight.gov/essay/Aerospace/Handley-page/Aero51.htm Centennial of Flight] Retrieved 2008-02-19]

Similar, but retractable, leading edge devices are called slatsAviation Publishers Co. Limited, "From the Ground Up", page 26 (27th revised edition) ISBN 09690054-9-0] . When the slat opens, it creates a slot between the slat and the remainder of the wing.

A fixed leading edge slot can increase the maximum lift coefficient of an airfoil section by 40%. In conjunction with a slat, the increase in maximum lift coefficient can be 50% or even 60%. [Kermode, A.C., "Mechanics of Flight", Figure 3.36]

Unlike trailing edge flaps, leading edge slots do not increase the lift coefficient at zero angle of attack. [Kermode, A.C., "Mechanics of Flight", Figure 3.37]

Operation

A leading edge slot is a fixed (non-closing) gap behind the wing’s leading edge. Air from below the wing can accelerate through the slot towards the low pressure region above the wing, and exit from the slot moving parallel to the upper wing surface. This high-speed flow then mixes with the boundary layer attached to the upper surface and delays boundary layer separation from the upper surface.

Slots naturally exact a penalty on the aircraft in which they are used. This is because they contribute to drag compared to an unslotted wing.Abbott and Von Doenhoff, "Theory of Wing Sections", Section 8.6] The extra drag at low speed is acceptable because of the beneficial reduction in stall speed and improvement in handling characteristics, but at higher speeds the extra drag contributed by slots is a significant disadvantage because it reduces cruising speed and increases fuel consumption per unit distance flown.

One way to reduce the cruise drag of slots is to make them able to be closed. This arrangement is known as leading edge slats. Aerodynamically, slats work in the same way as fixed slots but slats can be retracted at higher speeds when they are not needed. Slats, in turn, are heavier and more complex than slots.

At low angles of attack the airflow through the slot is insignificant, although it contributes to drag. At progressively higher angles of attack, the flow of air through the slot becomes increasingly significant, accelerating from the higher pressure region below the wing to the lower pressure region on top of the wing. At high angles of attack the fastest airspeed relative to the airfoil is very close to the leading edge, on the upper surface. In this region of high local airspeed, skin friction (viscous force) is very high and the boundary layer arriving at the slot on the upper wing has lost much of its total pressure (or total mechanical energy) due to this friction. In contrast, the air passing through the slot has not experienced this high local airspeed or high skin friction, and its total pressure remains close to the free-stream value. The mixing of the upper surface boundary layer with air arriving through the slot re-energises the boundary layer which then remains attached to the upper surface of the wing to a higher angle of attack than if the slot were not there. The leading edge slot was therefore one of the earliest forms of boundary layer control.

Application of leading edge slots

Leading edge slots are generally of two types: those that are full-span and those that are partial-span.

Full-span slots are generally found on Short Take-off and Landing STOL aircraft like the Fieseler Storch, PZL-104M Wilga 2000 and Zenair CH 701 STOL. Their primary purpose is to allow the aircraft to fly at a higher angle of attack before reaching the stalling angle.Crane, Dale: "Dictionary of Aeronautical Terms, third edition", page 471. Aviation Supplies & Academics, 1997. ISBN 1-56027-287-2]

In aircraft other than specialist STOL aircraft, full-span slots have serious drawbacks because, to take advantage of the high angle of attack at the stall, they usually necessitate long undercarriage legs that either cause high drag or are longer than can be accommodated easily inside the airframe. [Kermode, A.C., "Mechanics of Flight", Figures 6.6 and 6.7]

Partial-span slots are usually found only on the outboard portion of the wing where they ensure airflow over that portion of the wing will remain unstalled at higher angles of attack than the inboard portions of the wing. This ensures the wing root stalls first and contributes to docile stall behaviour and maintaining aileron control throughout the stall. Using slots in this manner produces a similar result to employing washout on a wing, but through a different means. Examples of aircraft with partial-span, fixed slots are the Stinson 108 and Bristol Beaufort.

References

*Ira H. Abbott, and Albert E. Von Doenhoff (1959), "Theory of Wing Sections", Dover Publications Inc., New York SBN 486-60586-8
*Aviation Publishers Co Limited: "From the Ground Up, Twenty-Seventh Revised Edition". Aviation Publishers Co Limited, 1996. ISBN 09690054-9-0
*Clancy, L.J. (1975), "Aerodynamics", Chapter 6 "High Lift Devices", Pitman Publishing Limited, London ISBN 0 273 01120 0
*Kermode, A.C. (1972), "Mechanics of Flight", Chapter 3 "Aerofoils – Subsonic Speeds" (8th edition) Pitman Publishing Limited, London ISBN 0 273 31623 0


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Slot — may refer to: * Slot, a space for a container on a ship usually expressed as a 20 or 40 slot (ie 20 or 40 feet). * Slot antenna, a directional antenna consisting of a slot in a piece of metal * Slot canyon, a type of narrow canyon formed by the… …   Wikipedia

  • slot — I [[t]slɒt[/t]] n. v. slot•ted, slot•ting 1) a slit or other narrow opening, esp. one for receiving something, as a coin or a letter 2) a place or position, as in a sequence or series 3) cvb an assignment or job opening; position 4) cvb inf… …   From formal English to slang

  • slot — I. noun Etymology: Middle English, the hollow at the base of the throat above the breastbone, from Anglo French esclot hoofprint, of Germanic origin; akin to Middle High German slag blow, hoofprint; probably from its resemblance to a hoofprint… …   New Collegiate Dictionary

  • slot — i. Fixed openings near the leading edge of the wing. At higher angles of attack, air from below the wing is guided through the slots and discharged over the upper surface, tangential to the wing surface, thereby re energizing the boundary layer… …   Aviation dictionary

  • Edge connector — An edge connector is the portion of a printed circuit board consisting of traces leading to the edge of the board that are intended to plug into a matching socket.An edge connector socket, often popularly referenced simply as a slot, is any type… …   Wikipedia

  • wing slot — noun : an adjustable opening between either the leading edge of an aileron and the rest of a wing or the leading edge of a wing and a cap fitting over it …   Useful english dictionary

  • The Edge of Night — Original main title (1956–1967) Also known as Edge of Night Genre Soap opera Created by Irving Vendig …   Wikipedia

  • Coandă-1910 — Coandă 1910 …   Wikipedia

  • Windmill sail — Windmills are powered by their sails. Sails are found in different designs, from primitive common sails to the advanced patent sails. Contents 1 Jib sails 2 Common sails 3 Spring sails 4 Roller reefing sail …   Wikipedia

  • Curtiss Tanager — Tanager Role Technology desmonstrator Manufacturer Curtiss Designer Robert R. Osborn and Theodore Paul Wright First flight 12 October 1929 Number built 1 The Curtiss Model 54 Tanager was an aircraft constructed in 1929 as C …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.