Dopamine receptor D1

Dopamine receptor D1
Symbols DRD1; DADR; DRD1A
External IDs OMIM126449 MGI99578 HomoloGene30992 GeneCards: DRD1 Gene
RNA expression pattern
PBB GE DRD1 214652 at tn.png
More reference expression data
Species Human Mouse
Entrez 1812 13488
Ensembl ENSG00000184845 ENSMUSG00000021478
UniProt P21728 Q80T33
RefSeq (mRNA) NM_000794.3 NM_010076.3
RefSeq (protein) NP_000785.1 NP_034206.1
Location (UCSC) Chr 5:
174.87 – 174.87 Mb
Chr 13:
54.15 – 54.15 Mb
PubMed search [1] [2]

Dopamine receptor D1, also known as DRD1, is a protein that in humans is encoded by the DRD1 gene.[1][2][3]



This gene encodes the D1 subtype of the dopamine receptor. The D1 subtype is the most abundant dopamine receptor in the central nervous system. This G-protein-coupled receptor stimulates adenylyl cyclase and activates cyclic AMP-dependent protein kinases. D1 receptors regulate neuronal growth and development, mediate some behavioral responses, and modulate dopamine receptor D2-mediated events[citation needed]. Alternate transcription initiation sites result in two transcript variants of this gene.[4]


There are a number of ligands selective for the D1 receptors. They comprise almost exclusively of compounds derived from dihydrexidine and from the prototypical benzazepine SCH-23,390.[5] While the benzazepines are generally highly and fully selective for the D1 receptor over all other receptors, the dihydrexidine derivatives do not distinguish between the D1 and D5 receptors and therefore cannot be said to be truly selective.[5] The benzazepines are weak partial agonists/antagonists with low intrinsic activity, whereas the dihydrexidine derivatives function as full agonists with intrinsic activity equal to or greater than that elicited by dopamine itself.[5]


Chemical structures of selective D1 receptor agonists.<[6][7]
  • Dihydrexidine derivatives
    • A-86,929 - full agonist with 14-fold selectivity for D1-like receptors over D2[5][7][8]
    • Dihydrexidine - full agonist with 10-fold selectivity for D1-like receptors over D2 that was being investigated for the treatment of Parkinson's disease but was discontinued due to intolerable side effects[5]
    • Dinapsoline - full agonist with 5-fold selectivity for D1-like receptors over D2[5]
    • Dinoxyline - full agonist with approximately equal affinity for D1-like and D2 receptors[5]
    • Doxanthrine - full agonist with 168-fold selectivity for D1-like receptors over D2[5]
  • Benzazepine derivatives
    • SKF-81,297 - 200-fold selectivity for D1 over any other receptor[5]
    • SKF-82,958 - 57-fold selectivity for D1 over D2[5]
    • SKF-38,393 - very high selectivity for D1 with negligible affinity for any other receptor[5]
    • Fenoldopam - highly selective peripheral D1 receptor partial agonist used clinically as an antihypertensive[5]
    • 6-Br-APB - 90-fold selectivity for D1 over D2[5]
  • Others
    • A-68,930
    • A-77,636
    • CY-208,243 - partial agonist with moderate selectivity for D1-like over D2-like receptors, structurally most closely related to ergoline-based dopamine agonists like pergolide.
    • SKF-89,145
    • SKF-89,626
    • 7,8-Dihydroxy-5-phenyl-octahydrobenzo[h]isoquinoline: extremely potent, high-affinity full agonist[9]
    • Cabergoline - weak D1 agonism, highly selective for D2, and various serotonin receptors
    • Pergolide - (similar to cabergoline) weak D1 agonism, highly selective for D2, and various serotonin receptors


  • Benzazepine derivatives
    • SCH-23,390 - 100-fold selectivity for D1 over D5[5]
    • SKF-83,959 - 7-fold selectivity for D1 over D5 with negligible affinity for other receptors;[5] acts as an antagonist at D1 but as an agonist at D5
    • Ecopipam (SCH-39,166) - a selective D1/D5 antagonist that was being developed as an anti-obesity medication but was discontinued[5]


Dopamine receptor D1 has been shown to interact with COPG,[10] DNAJC14[11] and COPG2.[10]

See also


  1. ^ Dearry A, Gingrich JA, Falardeau P, Fremeau RT, Bates MD, Caron MG (September 1990). "Molecular cloning and expression of the gene for a human D1 dopamine receptor". Nature 347 (6288): 72–6. doi:10.1038/347072a0. PMID 2144334. 
  2. ^ Zhou QY, Grandy DK, Thambi L, Kushner JA, Van Tol HH, Cone R, Pribnow D, Salon J, Bunzow JR, Civelli O (September 1990). "Cloning and expression of human and rat D1dopamine receptors". Nature 347 (6288): 76–80. doi:10.1038/347076a0. PMID 2168520. 
  3. ^ Sunahara RK, Niznik HB, Weiner DM, Stormann TM, Brann MR, Kennedy JL, Gelernter JE, Rozmahel R, Yang YL, Israel Y, O'Dowd BF. (September 1990). "Human dopamine D1 receptor encoded by an intronless gene on chromosome 5". Nature 347 (6288): 80–3. doi:10.1038/347080a0. PMID 1975640. 
  4. ^ "Entrez Gene: DRD1 dopamine receptor D1". 
  5. ^ a b c d e f g h i j k l m n o p Zhang J, Xiong B, Zhen X, Zhang A. (2009). "Dopamine D1 receptor ligands: where are we now and where are we going.". Med Res Rev. 29 (2): 272–294. doi:10.1002/med.20130. PMID 18642350. 
  6. ^ Cueva JP, Giorgioni G, Grubbs RA, Chemel BR, Watts VJ, Nichols DE (November 2006). "trans-2,3-dihydroxy-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]isoquinoline: synthesis, resolution, and preliminary pharmacological characterization of a new dopamine D1 receptor full agonist". J. Med. Chem. 49 (23): 6848–57. doi:10.1021/jm0604979. PMID 17154515. 
  7. ^ a b Michaelides MR, Hong Y, DiDomenico S, Asin KE, Britton DR, Lin CW, Williams M, Shiosaki K (1995). "(5aR,11bS)-4,5,5a,6,7,11b-hexahydro-2-propyl-3-thia-5-azacyclopent-1- ena[c]-phenanthrene-9,10-diol (A-86929): a potent and selective dopamine D1agonist that maintains behavioral efficacy following repeated administration and characterization of its diacetyl prodrug (ABT-431)". J. Med. Chem. 38 (18): 3445–7. doi:10.1021/jm00018a002. PMID 7658429. 
  8. ^ Yamashita M, Yamada K, Tomioka K (2004). "Construction of arene-fused-piperidine motifs by asymmetric addition of 2-trityloxymethylaryllithiums to nitroalkenes: the asymmetric synthesis of a dopamine D1 full agonist, A-86929". J. Am. Chem. Soc. 126 (7): 1954–5. doi:10.1021/ja031760n. PMID 14971926. 
  9. ^ PMID 20709559
  10. ^ a b Bermak, Jason C; Li Ming, Bullock Clayton, Weingarten Paul, Zhou Qun-Yong (Feb. 2002). "Interaction of gamma-COP with a transport motif in the D1 receptor C-terminus". Eur. J. Cell Biol. (Germany) 81 (2): 77–85. doi:10.1078/0171-9335-00222. ISSN 0171-9335. PMID 11893085. 
  11. ^ Bermak, J C; Li M, Bullock C, Zhou Q Y (May. 2001). "Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein". Nat. Cell Biol. (England) 3 (5): 492–8. doi:10.1038/35074561. ISSN 1465-7392. PMID 11331877. 

Further reading

External links

Metabolites and
signaling molecules
Class B: Secretin like Class C: Metabotropic
glutamate / pheromone Class F:
Frizzled / Smoothened B trdu: iter (nrpl/grfl/cytl/horl), csrc (lgic, enzr, gprc, igsr, intg, nrpr/grfr/cytr), itra (adap, gbpr, mapk), calc, lipd; path (hedp, wntp, tgfp+mapp, notp, jakp, fsap, hipp, tlrp)

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Dopamine receptor — Dopamine Dopamine receptors are a class of metabotropic G protein coupled receptors that are prominent in the vertebrate central nervous system (CNS). The neurotransmitter dopamine is the primary endogenous ligand for dopamine receptors. Dopamine …   Wikipedia

  • Dopamine receptor D2 — Rendering based on PDB 1I15 …   Wikipedia

  • Dopamine receptor D3 — Dopamine D3 receptor with Eticlopride(PDB 3PBL) …   Wikipedia

  • Dopamine receptor D4 — Identifiers Symbols DRD4; D4DR External IDs OMIM:  …   Wikipedia

  • Dopamine receptor D5 — Identifiers Symbols DRD5; DBDR; DRD1B; DRD1L2; MGC10601 External IDs …   Wikipedia

  • Dopamine reuptake inhibitor — Dopamine A dopamine reuptake inhibitor (DRI, DARI) is a type of drug that acts as a reuptake inhibitor for the neurotransmitter dopamine by blocking the action of the dopamine transporter (DAT). This in turn leads to increased extracellular… …   Wikipedia

  • Dopamine agonist — Dopamine A dopamine agonist is a compound that activates dopamine receptors in the absence of dopamine. Dopamine agonists activate signaling pathways through the dopamine receptor and trimeric G proteins, ultimately leading to changes in gene… …   Wikipedia

  • Dopamine beta hydroxylase deficiency — Classification and external resources Dopamine beta hydroxylase is the enzyme responsible for converting dopamine (pictured) to norepinephrine. OMIM …   Wikipedia

  • dopamine hypothesis of hallucinatory activity —    Dopamine is also referred to as 3 hydroxytyra mine, C6H3(OH)2 CH2 CH2 NH2,and 4 (2 aminoethyl)benzene 1,2 diol. The name dopamine is a contraction of the terms d(i)o(xy)p(henyl)a(lanine) and amine. The dopamine hypothesis constitutes a… …   Dictionary of Hallucinations

  • Dopamine —    Dopamine is a neurotransmitter belonging chemically to the class of catecholamines.    The efficacy of many antipsychotic drugs is thought to reside in their success in blocking the receptors for dopamine in the brain, especially the D2… …   Historical dictionary of Psychiatry

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.