The UDOP (UHF Doppler) multistatic radar and multiradar system (MSRS) utilizes Doppler radar for missile tracking and trajectory measurement. A target is illuminated at 450 MHz. Five receiving stations, located along the baselines with the lengths from 25 to 75 miles, receive signals from the target's transponder at 900 MHz. These five stations yield slant-range rate. To computed the range or position, an initial position is required from some other tracking system. The random error is 0.06 m, but total error includes the systematic error of 2.7 m plus the initial error. UDOP had relatively low cost compared with other high-accuracy systems. In the US, Multistatic Radars and Multiradar Systems (MSRS) have found important applications for precision measurements of missile trajectories at the Air Force Eastern Test Range, which extends from the Florida mainland to the Indian Ocean. These MSRSs include the AZUSA, the MISTRAM, and the UDOP. All systems employ a cooperative beacon transponder on the observed target and a ground-based transmitting station with several receiving stations at separate, precisely located sites. (1,2)

The UDOP used an AN/DRN-11 transponder installed in the Saturn (rocket family) launch vehicle for Project Gemini missions.

The C-band CW interferometric AZUSA, in operation from 1950s, contains one transmitter and nine receivers located along two crossed baselines with the total lengths of about 500m. Intermediate receivers spaced at 5 and 50 m are used for phase ambiguity resolution. The Azusa system measures range by phase measurement of sideband frequencies modulating the carrier, coherent range by Doppler count, two direction cosines, and two cosine rates. Errors of less than 3m in range and 20 ppm in direction cosine are obtainable. (1)

MISTRAM (Missile Trajectory Measurement) is a CW interferometric system with receiving stations situated along two mutually perpendicular baselines spaced at 3 and 30 km. This MSRS can measure range, four range differences, range rate and four range difference rates of a target. The range error is less than 0.8m. (1)

=Principles of Operation=There is nothing new in using a CW tracking system to obtain metric data. The system was augmented in 1965 by short baselines of a few meters to a few hundred meters in contrast to the conventional UDOP system with baselines of several kilometers and longer. The UDOP (UHF Doppler) system was used extensively for the Saturn (rocket family) program at the NASA John F. Kennedy Space Center.(3)

UDOP is a 2-way, coherent, continuous-wave, tracking system. It is a highly reliable data source providing very accurate velocity measurements. The UDOP system, a descendant of DOVAP, (Doppler Velocity and Position), was developed by NASA-KSC.


UDOP consists of three basic elements::# The ground transmitters:# The airborne transponder:# The ground receiver

In practice, a central recording station and data handling system are also used.

A simplified, functional block diagram of the close-in UDOP tracking system is shown in the figure. The transmitters use a primary frequency standard to derive frequencies used. The standard is multiplied to 50 mc and broadcast as a reference signal to the receiver sites. The 50 mc is multiplied to 450 mc and transmitted to the transponder on board the vehicle as an interrogation signal. The transponder receives the 450 mc signal, doubles and re-transmits at 900 mc.

The ground stations simultaneously receive the 50 mc reference signal and the 900 mc transponder signal. The 50 mc signal is multiplied by 18 and compared to the 900 mc signal. The difference will be zero for a vehicle on the pad and there will be a doppler effect (measured in cycles per second) if the vehicle is in motion. This effect will be proportional to a loop veiocity with amount depending on the location of the transmitter site, receiver sites, as well as vehicle position and velocity.

The UDOP ground receivers are double, superheterodyne, dual-channel units with common local oscillators. All resulting frequencies after mixing are related to the frequency standard except those experiencing doppler shift. Consequently, the doppler effects are measurable.


The existing system operates in an offset mode where the reference frequency is raised to 5 kc higher than 900 mc causing a 5 kc beat frequency as long as the vehicle is on the pad. When the vehicle moves, the doppler effect adds to the 5 kc frequency. The primary advantage is simplification of data handling as the frequency varies from 5 kc rather than zero. This offset frequency is derived using phased-locked loop techniques.


The UDOP digitized data recorded from each receiver station was fed to a computer which calculated positions X, Y, and Z. These positions were then fitted to a second degree polynomial using mid-point, moving arc smoothing over a one second interval.

From this process, smoothed position, velocity, and acceleration were obtained.

The data presented were reduced to at earth fixed, right handed, rectangular cartesian coordinate system. The Y axis is normal to the Clarke Spheroid of 1866 and positive upward. The X axis is positive in the direction of the flight azimuth. The origin for the UDOP system is at the vehicle transmitting antenna at vehicle launch position. (3)

#V S Chernyak. Fundamentals of Multisite Radar Systems: Multistatic Radars and Multiradar Systems. (Translated from Russian). CRC Press: New York, 1998. Pp. 26-27.
#Schneid, Daniel L. THE UDOP HANDBOOK. National Technical Information Service document no. AD0609038, JUL 1964, 214 pp.
#Instrumentation Systems Analysis Branch (K-ED2) and Tracking Branch (K-EF4), Saturn early launch phase tracking by CW Doppler, John F. Kennedy Space Center, SP-79, April 13, 1964, NASA doc. no. N65-19700, 52 pp.

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • UDOP — Ultrahigh Doppler NASA …   Acronyms

  • UDOP — Ultrahigh Doppler ( > NASA Acronym List ) …   Acronyms von A bis Z

  • UDOP — Ultrahigh Frequency Doppler (tracking system) Contributor: CASI …   NASA Acronyms

  • UDOP — abbr. User Defined Operational Picture …   Dictionary of abbreviations

  • MISTRAM — Missile Trajectory Measurement System. MISTRAM (MISsile TRAjectory Measurement) was a high resolution tracking system used by the United States Air Force (and later NASA) to provide highly detailed trajectory analysis of rocket launches. A… …   Wikipedia

  • ODOP — Doppler radar tracking system functional block diagram. The ODOP (Offset DOPpler) radar tracking system is essentially the same as the UDOP system used for many years at the Atlantic Missile Range, but ODOP operates at different frequencies. It… …   Wikipedia

  • Radar — For other uses, see Radar (disambiguation). A long range radar antenna, known as ALTAIR, used to detect and track space objects in conjunction with ABM testing at the Ronald Reagan Test Site on Kwajalein Atoll …   Wikipedia

  • Radar — Para otros usos de este término, véase Radar (desambiguación). Antena de radar de detección a larga distancia El radar (término derivado del acrónimo inglés radio detection and ranging, “detección y medición de distancias por radio”) es un… …   Wikipedia Español

  • УДО — условно досрочное освобождение Словарь: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. 318 с. УДО управление делами обороны воен. УДО управление… …   Словарь сокращений и аббревиатур

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.