﻿

# Brascamp-Lieb inequality

In mathematics, the Brascamp-Lieb inequality is a result in geometry concerning integrable functions on "n"-dimensional Euclidean space R"n". It generalizes the Loomis-Whitney inequality, the Prékopa-Leindler inequality and Hölder's inequality, and is named after Herm Jan Brascamp and Elliott H. Lieb. The original inequality (called the geometric inequality here) is in [H.J. Brascamp and E.H. Lieb, "Best Constants in Young's Inequality, Its""Converse and Its Generalization to More Than Three Functions", Adv. in Math.20, 151-172 (1976).] .Its generalization, stated first, is in [E.H.Lieb, "Gaussian Kernels have only Gaussian Maximizers", Inventiones Mathematicae102, pp. 179-208 (1990).]

tatement of the inequality

Fix natural numbers "m" and "n". For 1 &le; "i" &le; "m", let "n""i" &isin; N and let "c""i" &gt; 0 so that

:$sum_\left\{i = 1\right\}^\left\{m\right\} c_\left\{i\right\} n_\left\{i\right\} = n.$

Choose non-negative, integrable functions

:$f_\left\{i\right\} in L^\left\{1\right\} left\left( mathbb\left\{R\right\}^\left\{n_\left\{i ; \left[0, + infty\right] ight\right)$

and surjective linear maps

:$B_\left\{i\right\} : mathbb\left\{R\right\}^\left\{n\right\} o mathbb\left\{R\right\}^\left\{n_\left\{i.$

Then the following inequality holds:

:$int_\left\{mathbb\left\{R\right\}^\left\{n prod_\left\{i = 1\right\}^\left\{m\right\} f_\left\{i\right\} left\left( B_\left\{i\right\} x ight\right)^\left\{c_\left\{i , mathrm\left\{d\right\} x leq D^\left\{- 1/2\right\} prod_\left\{i = 1\right\}^\left\{m\right\} left\left( int_\left\{mathbb\left\{R\right\}^\left\{n_\left\{i\right\} f_\left\{i\right\} \left(y\right) , mathrm\left\{d\right\} y ight\right)^\left\{c_\left\{i,$

where "D" is given by

:$D = inf left\left\{ left. frac\left\{det left\left( sum_\left\{i = 1\right\}^\left\{m\right\} c_\left\{i\right\} B_\left\{i\right\}^\left\{*\right\} A_\left\{i\right\} B_\left\{i\right\} ight\right)\right\}\left\{prod_\left\{i = 1\right\}^\left\{m\right\} \left( det A_\left\{i\right\} \right)^\left\{c_\left\{i\right\} ight| A_\left\{i\right\} mbox\left\{ is a positive-definite \right\} n_\left\{i\right\} imes n_\left\{i\right\} mbox\left\{ matrix\right\} ight\right\}.$

Another way to state this is that the constant "D" is what one would obtain byrestricting attention to the case in which each $f_\left\{i\right\}$ is a centered Gaussianfunction, namely $f_\left\{i\right\}\left(y\right) = exp \left\{-\left(y,, A_\left\{i\right\}, y\right)\right\}$.

Relationships to other inequalities

The geometric Brascamp-Lieb inequality

The geometric Brascamp-Lieb inequality is a special case of the above, and was used by Ball (1989) to provide upper bounds for volumes of central sections of cubes.

For "i" = 1, ..., "m", let "c""i" &gt; 0 and let "u""i" &isin; S"n"−1 be a unit vector; suppose that that "c""i" and "u""i" satisfy

:$x = sum_\left\{i = 1\right\}^\left\{m\right\} c_\left\{i\right\} \left(x cdot u_\left\{i\right\}\right) u_\left\{i\right\}$

for all "x" in R"n". Let "f""i" &isin; "L"1(R; [0, +&infin;] ) for each "i" = 1, ..., "m". Then

:$int_\left\{mathbb\left\{R\right\}^\left\{n prod_\left\{i = 1\right\}^\left\{m\right\} f_\left\{i\right\} \left(x cdot u_\left\{i\right\}\right)^\left\{c_\left\{i , mathrm\left\{d\right\} x leq prod_\left\{i = 1\right\}^\left\{m\right\} left\left( int_\left\{mathbb\left\{R f_\left\{i\right\} \left(y\right) , mathrm\left\{d\right\} y ight\right)^\left\{c_\left\{i.$

The geometric Brascamp-Lieb inequality follows from the Brascamp-Lieb inequality as stated above by taking "n""i" = 1 and "B""i"("x") = "x" &middot; "u""i". Then, for "z""i" &isin; R,

:$B_\left\{i\right\}^\left\{*\right\} \left(z_\left\{i\right\}\right) = z_\left\{i\right\} u_\left\{i\right\}.$

It follows that "D" = 1 in this case.

Hölder's inequality

As another special case, take "n""i" = "n", "B""i" = id, the identity map on R"n", replacing "f""i" by $f_\left\{i\right\}^\left\{1/c_\left\{i$, and let "c""i" = 1 / "p""i" for 1 &le; "i" &le; "m". Then

:$sum_\left\{i = 1\right\}^\left\{m\right\} p_\left\{i\right\} = 1$

and the log-concavity of the determinant of a positive definite matrix implies that "D" = 1. This yields Hölder's inequality in R"n":

:$int_\left\{mathbb\left\{R\right\}^\left\{n prod_\left\{i = 1\right\}^\left\{m\right\} f_\left\{i\right\} \left(x\right) , mathrm\left\{d\right\} x leq prod_\left\{i = 1\right\}^\left\{m\right\} | f_\left\{i\right\} |_\left\{p_\left\{i.$

References

* cite book
last = Ball
first = Keith M.
chapter = Volumes of sections of cubes and related problems
title = Geometric aspects of functional analysis (1987--88)
editor = J. Lindenstrauss and V.D. Milman
series = Lecture Notes in Math., Vol. 1376
pages = pp. 251&ndash;260
publisher = Springer
location = Berlin
year = 1989

* cite journal
last=Gardner
first=Richard J.
title=The Brunn-Minkowski inequality
journal=Bull. Amer. Math. Soc. (N.S.)
volume=39
issue=3
year=2002
pages= pp. 355&ndash;405 (electronic)
issn = 0273-0979
url = http://www.ams.org/bull/2002-39-03/S0273-0979-02-00941-2/S0273-0979-02-00941-2.pdf
doi=10.1090/S0273-0979-02-00941-2

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Borell-Brascamp-Lieb inequality — In mathematics, the Borell Brascamp Lieb inequality is an integral inequality due to many different mathematicians but named after Christer Borell, Herm Jan Brascamp and Elliott Lieb.The result was proved for p gt; 0 by Henstock and Macbeath in… …   Wikipedia

• Loomis-Whitney inequality — In mathematics, the Loomis Whitney inequality is a result in geometry, which in its simplest form, allows one to estimate the size of a d dimensional set by the sizes of its ( d ndash; 1) dimensional projections. The inequality has applications… …   Wikipedia

• Prékopa-Leindler inequality — In mathematics, the Prékopa Leindler inequality is an integral inequality closely related to the reverse Young s inequality, the Brunn Minkowski inequality and a number of other important and classical inequalities in analysis. The result is… …   Wikipedia

• List of inequalities — This page lists Wikipedia articles about named mathematical inequalities. Inequalities in pure mathematics =Analysis= * Askey–Gasper inequality * Bernoulli s inequality * Bernstein s inequality (mathematical analysis) * Bessel s inequality *… …   Wikipedia

• List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

• Isoperimetrische Ungleichung — Die isoperimetrische Ungleichung ist eine mathematische Ungleichung aus der Geometrie, die in der Ebene den Flächeninhalt einer Figur gegen ihren Umfang abschätzt und im dreidimensionalen Raum das Volumen eines Körpers gegen dessen… …   Deutsch Wikipedia