János Bolyai


János Bolyai

Infobox Scientist
name = János Bolyai


image_width = 200px
caption = Unauthentic portrait of Bolyai
birth_date = birth date|1802|12|15|df=y
birth_place = Klausenburg, Transylvania, today Cluj-Napoca, Romania
residence = Austrian Empire
citizenship =
nationality = Austrian
ethnicity = Hungarian
death_date = death date and age|1860|1| 27|1802|12|15|df=y
alma_mater =
doctoral_advisor =
academic_advisors =
doctoral_students =
notable_students =
known_for = non-Euclidean geometry
author_abbrev_bot =
author_abbrev_zoo =
influences =
death_place = Neumarkt, Transylvania, today Târgu Mureş, Romania
fields = Mathematics
influenced =
awards =
religion =


footnotes =

János Bolyai (December 15, 1802January 27, 1860) was a Hungarian mathematician, known for his work in non-Euclidean geometry.

Bolyai was born in Klausenburg, Transylvania (today Cluj-Napoca, Romania), the son of a well-known mathematician, Farkas Bolyai.

By the age of 13, he had mastered calculus and other forms of analytical mechanics, receiving instruction from his father. He studied at the Royal Engineering College in Vienna from 1818 to 1822.He became so obsessed with Euclid's parallel postulate that his father wrote to him: "For God's sake, I beseech you, give it up. Fear it no less than sensual passions because it too may take all your time and deprive you of your health, peace of mind and happiness in life".János, however, persisted in his quest and eventually came to the conclusion that the postulate is independent of the other axioms of geometry and that different consistent geometries can be constructed on its negation.He wrote to his father: "Out of nothing I have created a strange new universe". [cite book|title=On the Shoulders of Giants|author=Lines, Malcolm E.|isbn=0750301031|year=1994] Between 1820 and 1823 he prepared a treatise on a complete system of non-Euclidean geometry. Bolyai's work was published in 1832 as an appendix to a mathematics textbook by his father.

Gauss, on reading the Appendix, wrote to a friend saying "I regard this young geometer Bolyai as a genius of the first order". In 1848 Bolyai discovered not only that Lobachevsky had published a similar piece of work in 1829, but also a generalization of this theory. As far as we know, Lobachevsky published his work a few years earlier than Bolyai, but it contained only hyperbolic geometry. Bolyai and Lobachevsky didn't know each other or each other's works.

In addition to his work in geometry, Bolyai developed a rigorous geometric concept of complex numbers as ordered pairs of real numbers. Although he never published more than the 24 pages of the Appendix, he left more than 20,000 pages of mathematical manuscripts when he died. These can now be found in the Bolyai-Teleki library in Târgu-Mureş, Romania, where Bolyai died.

He was an accomplished polyglot speaking nine foreign languages, including Chinese and Tibetan.

No original portrait of Bolyai survives. An unauthentic picture appears in some encyclopedias and on a Hungarian postage stamp.

Legacy

The Babeş-Bolyai University in Cluj-Napoca bears his name, as does the Bolyai crater on the Moon [http://lunar.arc.nasa.gov/printerready/science/geography_items/carters/craters_b.html] .Also, in the Carpathian basin, many high schools bear his name.

References


* Martin Gardner, "Non-Euclidean Geometry", Chapter 4 of "The Colossal Book of Mathematics", W.W.Norton & Company, 2001, ISBN 0-393-02023-1
* M. J. Greenberg, "Euclidean and Non-Euclidean Geometries: Development and History", 3rd edition, W. H. Freeman, 1994

External links

*
*


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • János Bolyai — [ˈjaːnoʃ ˈbojɒi] (* 15. Dezember 1802 in Klausenburg; † 17. Januar 1860 in Neumarkt am Mieresch), im Deutschen früher auch Johann Bolyai, war ein ungarischer Mathematiker. Er arbeitete als einer der ersten Mathematiker auf dem Gebiet… …   Deutsch Wikipedia

  • Janos Bolyai — János Bolyai auf einer ungarischen Briefmarke von 1960, Bild nicht authentisch János Bolyai [ˈjaːnoʃ ˈbojɒi] (* 15. Dezember 1802 in Klausenburg; † 17. Januar 1860 in Neumarkt am Mieresch), im Deutschen früher auch Johann Bolyai, war ein …   Deutsch Wikipedia

  • Janos Bolyai — János Bolyai Pour les articles homonymes, voir János et Bolyai. János Bolyai János Bolyai (15 décembre  …   Wikipédia en Français

  • János Bolyai — János Bolyai. János Bolyai fue un matemático húngaro, nacido el 15 de diciembre del año 1802 en Kolozsvár (actual Rumania), que en ese entonces era parte del Imperio Austro Húngaro. Su padre, Farkas Bolyai, también era matemático y amigo de Carl… …   Wikipedia Español

  • János Bolyai — Pour les articles homonymes, voir János et Bolyai. János Bolyai (15 décembre 1802 27 janvier 1860) est un mathématicien hongrois, l un des pères de la géométrie non euclidienne. Biographie Bolyai nait à Kolozsvar (aujourd hui… …   Wikipédia en Français

  • János Bolyai — Matemático húngaro, nacido el 15 de diciembre del año 1802 en Kolozsvár (actual Rumania), que en ese entonces era parte del Imperio Austro Húngaro. Su padre, Farkas Bolyai, también era matemático y amigo de Carl Friedrich Gauss. A los 13 años ya… …   Enciclopedia Universal

  • János Bolyai Mathematical Institute — at University of Szeged. See also * János Bolyai * University of Szeged External links * [http://server.math.u szeged.hu/general/bolyhist.htm A short history of the Bolyai Institute] …   Wikipedia

  • Bolyai (Cratère) — Pour les articles homonymes, voir Bolyai. Bolyai Localisation Astre Lune Coordonnées 33°  36’ …   Wikipédia en Français

  • Bolyai (cratere) — Bolyai (cratère) Pour les articles homonymes, voir Bolyai. Bolyai Localisation Astre Lune Coordonnées 33°  36’ …   Wikipédia en Français

  • BOLYAI (J.) — BOLYAI JÁNOS (1802 1860) S’intéressant aux mathématiques, János Bolyai y consacra les loisirs que lui laissait son métier d’officier du génie sous l’impulsion de son père Farkas Bolyai (1775 1856), professeur de mathématiques et ancien… …   Encyclopédie Universelle


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.