﻿

# Abbe sine condition

The Abbe sine condition is a condition that must be fulfilled by a lens or other optical system in order for it to produce sharp images of off-axis as well as on-axis objects. It was formulated by Ernst Abbe in the context of microscopes.

The mathematical condition is as follows:

:$frac\left\{sin u\text{'}\right\}\left\{sin U\text{'}\right\} = frac\left\{sin u\right\}\left\{sin U\right\}$

where the variables "u", "U" are the angles (relative to the optic axis) of any two rays as they leave the object, and "u’", "U’" are the angles of the same rays where they reach the image plane (say, the film plane of a camera). For example, ("u","u’") might represent a paraxial ray (i.e. a ray nearly parallel with the optic axis), and ("U","U’"') might represent a marginal ray (i.e a ray with the largest angle admitted by the system aperture); the condition is general, however, and does not only apply to those rays.

Put in words, "the sine of the output angle should be proportional to the sine of the input angle".

Magnification and the Abbe Sine Condition

Using the framework of Fourier optics, we may easily explain the significance of the Abbe sine condition. Say an object in the object plane of an optical system has a transmittance function of the form, "T"("x"o,"y"o). We may express this transmittance function in terms of its Fourier transform as:

:$T\left(x_o,y_o\right) = int!!!int T\left(k_x,k_y\right) ~ e^\left\{j\left(k_x x_o + k_y y_o\right)\right\} ~ dk_x dk_y$

Now, assume for simplicity that the system has no image distortion, so that the image plane coordinates are linearly related to the object plane coordinates via the relation

:$x_i = M x_o$:$y_i = M y_o$

where "M" is the system magnification. Let's now re-write the object plane transmittance above in a slightly modified form:

:$T\left(x_o,y_o\right) = int!!! int T\left(k_x,k_y\right) ~ e^\left\{j\left(\left(k_x/M\right) \left(Mx_o\right) + \left(k_y/M\right) \left(My_o\right)\right)\right\} ~ dk_x dk_y$

where we have simply multiplied and divided the various terms in the exponent by "M", the system magnification. Now, we may substitute the equations above for image plane coordinates in terms of object plane coordinates, to obtain,

:$T\left(x_i,y_i\right) = int!!! int T\left(k_x,k_y\right) ~ e^\left\{j\left(\left(k_x/M\right) x_i + \left(k_y/M\right) y_i\right)\right\} ~ dk_x dk_y$

At this point we can propose another coordinate transformation relating the object plane wavenumber spectrum to the image plane wavenumber spectrum as

:$k^i_x = k_x / M$:$k^i_y = k_y / M$

to obtain our final equation for the image plane field in terms of image plane coordinates and image plane wavenumbers as::$T\left(x_i,y_i\right) = M^2 intint T\left(M k^i_x,M k^i_y\right) ~ e^\left\{j\left(k^i_x x_i + k^i_y y_i\right)\right\} dk^i_x dk^i_y$From Fourier optics, we know that the wavenumbers can be expressed in terms of the spherical coordinate system as:$k_x = k sin heta cos phi$:$k_y = k sin heta sin phi$

If we consider a spectral component for which $phi =0$, then the coordinate transformation between object and image plane wavenumbers takes the form

:$k^i sin heta^i = k sin heta / M$

This is another way of writing the Abbe sine condition, which simply reflects Heisenberg's uncertainty principle for Fourier transform pairs, namely that as the spatial extent of any function is expanded (by the magnification factor, "M"), the spectral extent contracts by the same factor, "M", so that the "space-bandwidth product" remains constant.

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Abbe’s sine condition — Abės sinusų sąlyga statusas T sritis fizika atitikmenys: angl. Abbe’s sine condition vok. Abbesche Sinusbedingung, f rus. условие синусов Аббе, n pranc. condition des sinus d’Abbe, f …   Fizikos terminų žodynas

• sine condition — sinusų sąlyga statusas T sritis fizika atitikmenys: angl. sine condition vok. Sinusbedingung, f rus. условие синусов, n pranc. condition d’Abbe, f; condition des sinus, f …   Fizikos terminų žodynas

• Abbe — may refer to:People*Cleveland Abbe (1818 1916), American meteorologist *Cleveland Abbe, Jr. (1872 1934), American geographer *Ernst Karl Abbe (1840 1916), German physicist *James Abbe (1883 1975), American photographer *Kenshiro Abbe (1916 1985) …   Wikipedia

• Abbe , Ernst — (1840–1905) German physicist Abbe, who was born in Eisenach (now in Germany), came from poor parents but managed to become a lecturer at the University of Jena, where in 1886 he collaborated with Carl Zeiss, a supplier of optical instruments to… …   Scientists

• Abbe, Ernst — ▪ German physicist born Jan. 23, 1840, Eisenach, Grand Duchy of Saxe Weimar Eisenach died Jan. 14, 1905, Jena, Ger.       physicist whose theoretical and technical innovations in optical theory led to great improvements in microscope design (such …   Universalium

• condition des sinus d’Abbe — Abės sinusų sąlyga statusas T sritis fizika atitikmenys: angl. Abbe’s sine condition vok. Abbesche Sinusbedingung, f rus. условие синусов Аббе, n pranc. condition des sinus d’Abbe, f …   Fizikos terminų žodynas

• condition d’Abbe — sinusų sąlyga statusas T sritis fizika atitikmenys: angl. sine condition vok. Sinusbedingung, f rus. условие синусов, n pranc. condition d’Abbe, f; condition des sinus, f …   Fizikos terminų žodynas

• condition des sinus — sinusų sąlyga statusas T sritis fizika atitikmenys: angl. sine condition vok. Sinusbedingung, f rus. условие синусов, n pranc. condition d’Abbe, f; condition des sinus, f …   Fizikos terminų žodynas

• Ernst Karl Abbe — Infobox Scientist name = Ernst Abbe |300px caption = Ernst Karl Abbe (1840 1905) birth date = birth date|1840|1|23|mf=y birth place = Eisenach, Saxe Weimar Eisenach death date = death date and age|1905|1|14|1840|1|23|mf=y death place = Jena,… …   Wikipedia

• Carl Zeiss — Infobox Scientist name = PAGENAME box width = image width =150px caption = PAGENAME birth date = September 11, 1816 birth place = death date = December 3, 1888 death place = residence = citizenship = nationality = ethnicity = field = optics work… …   Wikipedia