# List of atmospheric radiative transfer codes

**List of atmospheric radiative transfer codes**- this article contains list of atmospheric radiative transfer codes and their applications.**Classification**The compilation contains information about the atmospheric radiative transfer, relevant databases, and atmospheric radiation parameterizations. Public domain codes are grouped separately from commercial codes. The codes are classified accordingly to several criteria:

*Solver method: (a) numerical discretization of the

radiative transfer equation(examples include discrete ordinate method,Monte Carlo method , or adding and doubling metod), (b) geometry (e.g. plane parallel or three dimensional)

*Properties of theatmosphere such as: (a) single scattering properties of cloud droplets, ice crystals, aerosols; (b) scattering and absorbing properties of air molecules

*Characterization of boundary conditions (e.g.bidirectional reflectance distribution function ,albedo )

*Type of output (e.g.irradiance orradiance )**Public molecular absorption databases**Other transmission band codes include LOWTRAN (Kneizs et al., 1983) which is now obsolete, Moderate Spectral Atmospheric Radiance and Transfer (MOSART), SMAC (Rahman and Dedieu, 1994) a Simplified Method for the Atmospheric Correction of Satellite Measurements in the Solar Spectrum , and LidarPC.

**Public multiple scattering plane-parallel**Other code is FEMRAD, finite element method.

**Public vector (polarization) codes****History**This compilation was originally (at the beginning of 2000's) known as RTELIB and was maintained by Piotr J. Flatau at Scripps Institution of Oceanography.

**References****Books**In this subsection we list only books which, besides general content, specifically document available radiative transfer codes. For more complete list of atmospheric radiative transfer related books see an article on

atmospheric radiative transfer codes . Mobley (1994) documents in great detailHydrolight code which is used mostly in ocean optics applications. Thomas and Stamnes (1999) describesDISORT code.*Mobley, Curtis D., Light and water : radiative transfer in natural waters; based in part on collaborations with Rudolph W. Preisendorfer, San Diego, Academic Press, 1994, 592 p., ISBN 0125027508

* Thomas, Gary E.and Knut Stamnes, Radiative transfer in the atmosphere and ocean, Cambridge, New York, Cambridge University Press, 1999, 517 p., ISBN 0521401240.

**Original papers and reports**Original papers and reports documenting available atmospheric radiative transfer codes.

*Berk, A., Bernstein, L.S., Anderson, G.P., Acharya, P.K., Robertson, D.C., Chetwynd, J.H., Adler-Golden, S. M. , MODTRAN cloud and multiple scattering upgrades with application to AVIRIS, Remote Sensing of Envionment, 65 (3): 367-375 Sep. 1998

* Bird, R.E., and C. Riordan, Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's Surface for Cloudless Atmospheres, Technical Report No. SERI/TR-215-2436, Golden, CO: Solar Energy Research Institute, 1984

* Cahalan, R. F., L. Oreopoulos, A. Marshak, K. F. Evans, A. Davis, R. Pincus, K. Yetzer, B. Mayer, R. Davies, T. Ackerman, H. Barker, E. Clothiaux, R. Ellingson, M. Garay, E. Kassianov, S. Kinne, A. Macke, W. OHirok, P. Partain, S. Prigarin, A. Rublev, G. Stephens, F. Szczap, E. Takara, T. Varnai, G. Wen, and T. Zhuravleva, 2005: The International Intercomparison of 3D Radiation Codes (I3RC): Bringing together the most advanced radiative transfer tools for cloudy atmospheres. Bull. Amer. Meteor. Soc., 86 (9), 1275-1293.

* Edwards, D. P. (1992), GENLN2: A general line-by-line atmospheric transmittance and radiance model, Version 3.0 description and users guide, NCAR/TN-367-STR, National Center for Atmospheric Research, Boulder, Co.

* Edwards, D. P. (1987), GENLN2: The new Oxford line-by-line atmospheric transmission/radiance model, Dept. of Atmospheric, Oceanic and Planetary Physics, Memorandum 87.2, University of Oxford, UK.

* Evans, K. Franklin, SHDOMPPDA: A Radiative Transfer Model for Cloudy Sky Data Assimilation, 2007, Journal of Atmospheric Sciences, in press

*Eymet. V., R. Fournier, S. Blanco, J.-L. Dufresne; A boundary-based net-exchange Monte-Carlo method for absorbing and scattering thick media, J. Quant. Spectrosc. Radiat. Transfer, Vol. 91, pp. 27-46, 2005.

*Gregg, W. W. and Carder, K. L., A simple spectral solar irradiance model for cloudless maritime atmospheres, Limnol. Oceanogr. 35 1657-1675 , (1990) [

*http://aslo.org/lo/toc/vol_35/issue_8/1657.pdf*]*Gordley, L.L., Marshall, B.T., and Chu. A., LINEPAK: Algorithm for Modeling Spectral Transmittance and Radiance, J. Quant. Spectrosc. Radiat. Transfer Vol. 52, No. 5, pp.563-580, 1994

*Gribanov, K.G., Zakharov, V.I., Tashkun, S.A., Tyuterev, Vl.G. A New Software Tool for Radiative Transfer Calculations and its application to IMG/ADEOS data. JQSRT, vol.68, No.4, pp.435-451, 2001

*Halthore, Rangasayi N.; Crisp, David; Schwartz, Stephen E.; Anderson, G. P.; Berk, A.; Bonnel, B.; Boucher, O.; Chang, Fu-Lung; Chou, Ming-Dah; Clothiaux, Eugene E.; Dubuisson, P.; Fomin, Boris; Fouquart, Y.; Freidenreich, S.; Gautier, Catherine; Kato, Seiji; Laszlo, Istvan; Li, Z.; Mather, J. H.; Plana-Fattori, Artemio; Ramaswamy, V.; Ricchiazzi, P.; Shiren, Y.; Trishchenko, A.; Wiscombe, W., 2005, Intercomparison of shortwave radiative transfer codes and measurements, J. Geophys. Res., Vol. 110, No. D11, D11206, 10.1029/2004JD005293. Test input and output cases are available for evaluating other radiative transfer codes.

*Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, doi:10.1029/JD009944, 2008.

*Key, J. and A.J. Schweiger, 1998, Tools for atmospheric radiative transfer: Streamer and FluxNet, Computers & Geosciences, 24(5), 443-451.

*Kneizys, F.X., E.P. Shettle, W.O. Gallery, J.H. Chetwynd, L.W., Abreu, J.E.A. Selby, S.A. Clough and R.W. Fenn, "Atmospheric transmittance/radiance: computer code LOWTRAN 6", Air Force Geophysics Laboratroy, Report AFGL-TR-83-0187, Hanscom AFB, MA. 1983.

*Kotchenova, S. Y., E. F. Vermote, R. Matarrese, & F. J. Klemm, Jr., Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance, Appl. Opt. 45(26), 6762-6774 (2006).

*Kotchenova S. Y., & E. F. Vermote, Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II: Homogeneous Lambertian and anisotropic surfaces, Appl. Opt. in press (2007).

*Lyapustin, A. I., Radiative transfer code SHARM for atmospheric and terrestrial applications, Appl. Opt. 44, 7764-7772, 2005.

*Mayer, B. and A. Kylling, Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys., 5, 1855-1877, 2005

*Marshall, B.T. and Gordley, L.L, BANDPAK: Algorithms for Modeling Broadband Transmission and Radiance, J. Quant. Spectrosc. Radiat. Transfer Vol.52, No. 5, pp. 581-599, 1994.

*Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102, 16663-16682, doi:10.1029/97JD00237, 1997.

*Rothman L.S., Jacquemart D., Barbe A., Benner D.C., Birk M., Brown L.R., Carleer M.R., Chackerian C., Chance K., Coudert L.H., Dana V., Devi V.M., Flaud J.M., Gamache R.R., Goldman A., Hartmann J.M., Jucks K.W., Maki A.G., Mandin J.Y., Massie S.T., Orphal J., Perrin A., Rinsland C.P., Smith M.A.H., Tennyson J., Tolchenov R.N., Toth R.A., Vander Auwera J., Varanasi P., Wagner G., The HITRAN 2004 molecular spectroscopic database Source: Journal of Quantitative Spectroscopy & Radiative Transfer, 96 (2): 139-204 DEC 1 2005

*Rozanov, A., V. Rozanov, M. Buchwitz, A. Kokhanovsky, J.P. Burrows, SCIATRAN 2.0 - A new radiative transfer model for geophysical applications in the 175-2400 nm spectral region, Adv. Space Res., Vol. 36(5), 1015-1019, doi:10.1016/j.asr.2005.03.012, 2005.

*Schwander, H., A. Kaifel, A. Ruggaber, and P. Koepke, Spectral radiative transfer modelling with minimized computation time using neural network technique., Appl. Opt., Vol. 40, No. 3, p. 331-335, 2001.

*Stamnes, K., S. Tsay, W. Wiscombe and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 2502-2509.

* Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., Morcrette, J.J., Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview, IEEE Transactions on Geoscience and Remote Sensing, 35 (3): 675-686 May 1997.

*Wikimedia Foundation.
2010.*

### Look at other dictionaries:

**Atmospheric radiative transfer codes**— calculate radiative transfer of electromagnetic radiation through Earth s atmosphere.Radiative transfer codes are used in broad range of applications related to predictions. For example, climate modeling use simplified version of atmospheric… … Wikipedia**Radiative transfer**— The term radiative transfer refers to the physical phenomena of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission and scattering processes. The equation of… … Wikipedia**Community Radiative Transfer Model**— (CRTM) is the fast radiative transfer model for calculations of radiances for satellite infrared or microwave nadir scanning radiometers (see push broom scanner). Given an atmospheric profile of temperature, variable gas concentrations, cloud and … Wikipedia**6S (radiative transfer code)**— 6SV1 (Second Simulation of a Satellite Signal in the Solar Spectrum, Vector, version 1) is an advanced radiative transfer code designed to simulate the reflection of solar radiation by a coupled atmosphere surface system for a wide range of… … Wikipedia**Codes for electromagnetic scattering by spheres**— this article list codes for electromagnetic scattering by a homogeneous sphere, layered sphere, and cluster of spheres. Some of the source codes may be available on [1]. Contents 1 Solution techniques 2 Classification … Wikipedia**Codes for electromagnetic scattering by cylinders**— this article list codes for electromagnetic scattering by a cylinder. Some of the source codes may be available on [1]. Majority of existing codes for calculation of electromagnetic scattering by a single cylinder are based on Mie theory, which… … Wikipedia**Atmospheric reentry**— refers to the movement of human made or natural objects as they enter the atmosphere of a planet from outer space, in the case of Earth from an altitude above the edge of space. This article primarily addresses the process of controlled reentry… … Wikipedia**Discrete dipole approximation codes**— This article contains list of discrete dipole approximation codes and their applications. The discrete dipole approximation (DDA) is a flexible technique for computing scattering and absorption by targets of arbitrary geometry. Given a target of… … Wikipedia**DISORT**— (Discrete Ordinates Radiative Transfer Program for a Multi Layered Plane Parallel Medium) general and versatile plane parallel radiative transfer program applicable to problems from the ultraviolet to the radar regions of the electromagnetic… … Wikipedia**4A/OP**— an operational fast and accurate radiative transfer model for the infrared. 4A stands for Automatized Atmospheric Absorption Atlas.4A/OP is a user friendly software for various scientific applications (surface, balloon or space based… … Wikipedia