﻿

# Ramanujan summation

Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a sum to infinite divergent series. Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties which make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

Ramanujan summation essentially is a property of the partial sums, rather than a property of the entire sum, as it doesn't exist. If we take the Euler–Maclaurin summation formula together with the correction rule using Bernoulli numbers, we see that:

:$frac\left\{fleft\left( 0 ight\right) \right\}\left\{2\right\}+fleft\left( 1 ight\right) +cdots+fleft\left( n-1 ight\right) +frac\left\{fleft\left( n ight\right) \right\}\left\{2\right\} =frac\left\{fleft\left( 0 ight\right) +fleft\left( n ight\right) \right\}\left\{2\right\}+sum_\left\{k=1\right\}^\left\{n-1\right\}fleft\left(k ight\right) = int_0^n f\left(x\right),dx + sum_\left\{k=1\right\}^pfrac\left\{B_\left\{k+1\left\{\left(k+1\right)!\right\}left\left(f^\left\{\left(k\right)\right\}\left(n\right)-f^\left\{\left(k\right)\right\}\left(0\right) ight\right)+R$

or simply::$fleft\left( 1 ight\right)+fleft\left( 2 ight\right) +cdots+fleft\left( n-2 ight\right) + fleft\left( n-1 ight\right)= C + int_1^n f\left(x\right),dx + sum_\left\{k=1\right\}^inftyfrac\left\{B_\left\{k+1\left\{\left(k+1\right)!\right\}left\left(f^\left\{\left(k\right)\right\}\left(n\right)-f^\left\{\left(k\right)\right\}\left(0\right) ight\right)$

Where C is a constant specific to the series and its analytic continuum. This he proposes to use as the sum of the divergent sequence. It is like a bridge between summation and integration. Using standard extensions for known divergent series, he calculated "Ramanujan summation" of those. In particular, the sum of 1 + 2 + 3 + 4 + · · · is

:$1+2+3+cdots = -frac\left\{1\right\}\left\{12\right\} \left(Re\right)$

where the notation $\left(Re\right)$ indicates Ramanujan summation. [ Éric Delabaere, [http://algo.inria.fr/seminars/sem01-02/delabaere2.pdf Ramanujan's Summation] , "Algorithms Seminar 2001–2002", F. Chyzak (ed.), INRIA, (2003), pp. 83–88.] This formula originally appeared in one of Ramanujan's notebooks, without any notation to indicate that it was a Ramanujan summation.

For even powers we have:

:$1+2^\left\{2k\right\}+3^\left\{2k\right\}+cdots = 0 \left(Re\right)$

and for odd powers we have a relation with the Bernoulli numbers:

:$1+2^\left\{2k-1\right\}+3^\left\{2k-1\right\}+cdots = -frac\left\{B_\left\{2k\left\{2k\right\} \left(Re\right).$

* Borel summation
* Cesàro summation
* Ramanujan's sum

References

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Ramanujan's sum — This article is not about Ramanujan summation. In number theory, a branch of mathematics, Ramanujan s sum, usually denoted c q ( n ), is a function of two positive integer variables q and n defined by the formula:c q(n)=sum {a=1atop… …   Wikipedia

• Srinivasa Ramanujan — Infobox Scientist name=Srinivasa Ramanujan thumb|Srinivasa Ramanujan birth date = birth date|1887|12|22|df=y birth place = Erode, Tamil Nadu, India death date = death date and age|1920|4|26|1887|12|22|df=y death place = Chetput, (Madras), Tamil… …   Wikipedia

• List of topics named after Srinivasa Ramanujan — Srinivasa Ramanujan (1887 1920) is the eponym of all of the topics listed below.*Dougall Ramanujan identity *Hardy Ramanujan number *Landau Ramanujan constant *Ramanujan s congruences *Ramanujan Nagell equation *Ramanujan Peterssen conjecture… …   Wikipedia

• Sumatorio de Ramanujan — Srinivasa Ramanujan. El sumatorio de Ramanujan es una técnica inventada por el matemático indio Srinivasa Ramanujan para asignar una suma a una serie divergente infinita. A pesar de que el sumatorio de Ramanujan de una serie divergente no es una… …   Wikipedia Español

• List of mathematics articles (R) — NOTOC R R. A. Fisher Lectureship Rabdology Rabin automaton Rabin signature algorithm Rabinovich Fabrikant equations Rabinowitsch trick Racah polynomials Racah W coefficient Racetrack (game) Racks and quandles Radar chart Rademacher complexity… …   Wikipedia

• List of Indian inventions — [ thumb|200px|right|A hand propelled wheel cart, Indus Valley Civilization (3000–1500 BCE). Housed at the National Museum, New Delhi.] [ 200px|thumb|Explanation of the sine rule in Yuktibhasa .] List of Indian inventions details significant… …   Wikipedia

• Arithmetic function — In number theory, an arithmetic (or arithmetical) function is a real or complex valued function ƒ(n) defined on the set of natural numbers (i.e. positive integers) that expresses some arithmetical property of n.  An example of an arithmetic… …   Wikipedia

• Polylogarithm — Not to be confused with polylogarithmic. In mathematics, the polylogarithm (also known as Jonquière s function) is a special function Lis(z) that is defined by the infinite sum, or power series: It is in general not an elementary function, unlike …   Wikipedia

• Ramanujansumme — Als Ramanujansumme wird in der Zahlentheorie, einem Teilgebiet der Mathematik, eine bestimmte endliche Summe cq(n), deren Wert von der natürlichen Zahl q und der ganzen Zahl n abhängt, bezeichnet. Sie wird durch definiert. Die Schreibweise (a,q)… …   Deutsch Wikipedia

• Riemann hypothesis — The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line Re(s) = 1/2. The first non trivial zeros can be seen at Im(s) = ±14.135, ±21.022 and ±25.011 …   Wikipedia