# Amplitude-shift keying

**Amplitude-shift keying**(**ASK**) is a form ofmodulation that representsdigital data as variations in theamplitude of acarrier wave .The amplitude of an analog carrier

signal varies in accordance with the bit stream (modulating signal), keepingfrequency and phase constant. The level of amplitude can be used to representbinary logic 0s and 1s. We can think of a carrier signal as an ON or OFF switch. In the modulated signal, logic 0 is represented by the absence of a carrier, thus giving OFF/ON keying operation and hence the name given.Like AM, ASK is also linear and sensitive to atmospheric noise, distortions, propagation conditions on different routes in

PSTN , etc. Both ASK modulation and demodulation processes are relatively inexpensive. The ASK technique is also commonly used to transmitdigital data over optical fiber. For LED transmitters, binary 1 is represented by a short pulse of light and binary 0 by the absence of light. Laser transmitters normally have a fixed "bias" current that causes the device to emit a low light level. This low level represents binary 0, while a higher-amplitude lightwave represents binary 1.**Encoding**The simplest and most common form of ASK operates as a switch, using the presence of a carrier wave to indicate a binary one and its absence to indicate a binary zero. This type of modulation is called

, and is used at radio frequencies to transmiton-off keying Morse code (referred to ascontinuous wave operation).More sophisticated encoding schemes have been developed which represent data in groups using additional amplitude levels. For instance, a four-level encoding scheme can represent two

bit s with each shift in amplitude; an eight-level scheme can represent three bits; and so on. These forms of amplitude-shift keying require a highsignal-to-noise ratio for their recovery, as by their nature much of the signal is transmitted at reduced power.Here is a diagram showing the ideal model for a transmission system using an ASK modulation:

It can be divided into three blocks. The first one represents the transmitter, the second one is a linear model of the effects of the channel, the third one shows the structure of the receiver. The following notation is used:

* "h_{t}(t)" is the carrier signal for the transmission

* "h_{c}(t)" is the impulse response of the channel

* "n(t)" is the noise introduced by the channel

* "h_{r}(t)" is the filter at the receiver

* "L" is the number of levels that are used for transmission

* "T_{s}" is the time between the generation of two symbolsDifferent symbols are represented with different voltages. If the maximum allowed value for the voltage is "A", then all the possible values are in the range " [-A,A] " and they are given by:

:$v\_i\; =\; frac\{2\; A\}\{L-1\}\; i\; -\; A;\; quad\; i\; =\; 0,1,dots,\; L-1$

the difference between one voltage and the other is:

:$Delta\; =\; frac\{2\; A\}\{L\; -\; 1\}$

Considering the picture, the symbols "v [n] " are generated randomly by the source "S", then the "impulse generator" creates impulses with an area of "v [n] ". These impulses are sent to the filter "h

_{t}" to be sent through the channel. In other words, for each symbol a different carrier wave is sent with the relative amplitude.Out of the transmitter, the signal "s(t)" can be expressed in the form:

:$s\; (t)\; =\; sum\_\{n\; =\; -infty\}^\{infty\}\; v\; [n]\; cdot\; h\_t\; (t\; -\; n\; T\_s)$

In the receiver, after the filtering through "h

_{r}(t)" the signal is::$z(t)\; =\; n\_r\; (t)\; +\; sum\_\{n\; =\; -infty\}^\{infty\}\; v\; [n]\; cdot\; g\; (t\; -\; n\; T\_s)$

where we use the notation:

:$n\_r\; (t)\; =\; n(t)\; *\; h\_r\; (t)$

:$g(t)\; =\; h\_t\; (t)\; *\; h\_c\; (t)\; *\; h\_r\; (t)$

where * indicates the

convolution between two signals. After the A/D conversion the signal "z [k] " can be expressed in the form::$z\; [k]\; =\; n\_r\; [k]\; +\; v\; [k]\; g\; [0]\; +\; sum\_\{n\; eq\; k\}\; v\; [n]\; g\; [k-n]$

In this relationship, the second term represents the symbol to be extracted. The others are unwanted: the first one is the effect of noise, the second one is due to the

intersymbol interference .If the filters are chosen so that "g(t)" will satisfy the

Nyquist ISI criterion , then there will be nointersymbol interference and the value of the sum will be zero, so::$z\; [k]\; =\; n\_r\; [k]\; +\; v\; [k]\; g\; [0]$

the transmission will be affected only by noise.

**Probability of error**The

probability density function to make an error after a certain symbol has been sent can be modelled by a Gaussian function; the mean value will be the relative sent value, and itsvariance will be given by::$sigma\_N\; =\; int\_\{-infty\}^\{+infty\}\; Phi\_N\; (f)\; cdot\; |H\_r\; (f)|^2\; df$

where $Phi\_N\; (f)$ is the

spectral density of the noise within the band and "H_{r}(f)" is thecontinuous Fourier transform of the impulse response of the filter "h_{r}(f)".The possibility to make an error is given by:

:$P\_e\; =\; P\_\{e/H\_0\}\; cdot\; P\_\{H\_0\}\; +\; P\_\{e/H\_1\}\; cdot\; P\_\{H\_1\}\; +\; dots\; +\; P\_\{e/H\_\{L-1\; cdot\; P\_\{H\_\{L-1$

where $P\_\{e/H\_0\}$ is the

conditional probability of making an error after a symbol "v_{i}" has been sent and $P\_\{H\_0\}$ is the probability of sending a symbol "v_{0}".If the probability of sending any symbol is the same, then:

:$P\_\{H\_i\}\; =\; frac\{1\}\{L\}$

If we represent all the probability density functions on the same plot against the possible value of the voltage to be transmitted, we get a picture like this (the particular case of L=4 is shown):

The possibility of making an error after a single symbol has been sent is the area of the Gaussian function falling under the other ones. It is shown in cyan just for one of them. If we call "P

^{+}" the area under one side of the Gaussian, the sum of all the areas will be: $2\; L\; P^+\; -\; 2\; P^+$. The total probability of making an error can be expressed in the form::$P\_e\; =\; 2\; left(\; 1\; -\; frac\{1\}\{L\}\; ight)\; P^+$

We have now to calculate the value of "P

^{+}".In order to do that, we can move the origin of the reference wherever we want: the area below the function will not change. We are in a situation like the one shown in the following picture:it does not matter which Gaussian function we are considering, the area we want to calculate will be the same. The value we are looking for will be given by the following integral:

:$P^+\; =\; int\_\{frac\{A\; g(0)\}\{L-1^\{infty\}\; frac\{1\}\{sqrt\{2\; pi\}\; sigma\_N\}\; e^\{-frac\{x^2\}\{2\; sigma\_N^2\; d\; x\; =\; frac\{1\}\{2\}\; operatorname\{erfc\}\; left(\; frac\{A\; g(0)\}\{sqrt\{2\}\; (L-1)\; sigma\_N\}\; ight)$

where erfc() is the

complementary error function . Putting all these results together, the probability to make an error is::$P\_e\; =\; left(\; 1\; -\; frac\{1\}\{L\}\; ight)\; operatorname\{erfc\}\; left(\; frac\{A\; g(0)\}\{sqrt\{2\}\; (L-1)\; sigma\_N\}\; ight)$

from this formula we can easily understand that the probability to make an error decreases if the maximum amplitude of the transmitted signal or the amplification of the system becomes greater; on the other hand, it increases if the number of levels or the power of noise becomes greater.

This relationship is valid when there is no intersymbol interference, i.e. "g(t)" is a Nyquist function.

**ee also***

Frequency-shift keying

*Phase-shift keying

*Nyquist ISI criterion

*Intersymbol interference **External links*** [

*http://www.maxim-ic.com/appnotes.cfm/appnote_number/2815/CMP/WP-21 Calculating the Sensitivity of an Amplitude Shift Keying (ASK) Receiver*]

*Wikimedia Foundation.
2010.*

### Look at other dictionaries:

**Amplitude Shift Keying**— Amplitudenumtastung (engl. Amplitude Shift Keying (ASK)) ist eine digitale Modulationsart. Dabei wird die Amplitude des Trägersignals verändert, um verschiedene Werte zu übertragen. Die einfachste Form der Amplitudentastung ist das sogenannte On… … Deutsch Wikipedia**amplitude shift keying**— amplitudės manipuliavimas statusas T sritis automatika atitikmenys: angl. amplitude shift keying vok. Amplitudentastung, f rus. амплитудная манипуляция, f pranc. modulation par déplacement d amplitude, f … Automatikos terminų žodynas**Amplitude and phase-shift keying**— or Asymmetric Phase shift keying, (APSK), is a digital modulation scheme that conveys data by changing, or modulating, both the amplitude and the phase of a reference signal (the carrier wave). In other words, it combines both Amplitude shift… … Wikipedia**Phase-shift keying**— Passband modulation v · d · e Analog modulation AM · … Wikipedia**Phase Shift Keying**— Die rote Sinusschwingung ist gegenüber der blauen Sinusschwingung um ein Viertel der Periodendauer verzögert. Im komplexen zweiseitigen Frequenzspektrum zeigt sich das als eine 90° Drehung der beiden Spektrallinien, die den Träger darstellen. Die … Deutsch Wikipedia**Frequency-shift keying**— Passband modulation v · d · e Analog modulation AM · … Wikipedia**Phase shift keying**— Traduction terminée Phase shift keying → … Wikipédia en Français**Phase-shift keying**— Le Phase shift keying (ou PSK, soit « modulation par déplacement de phase ») désigne une famille de formes de modulations numériques qui ont toutes pour principe de véhiculer de l information binaire via la phase d un signal de… … Wikipédia en Français**Frequency Shift Keying**— Bildung eines binären FSK Signals. Oben: Quelldaten als eine Folge von logisch 1 und logisch 0. Mitte: Unmodulierte Trägerfrequenz Unten: Moduliertes FSK Signal. Die Frequenzumtastung (englisch Frequency Shift Keying, FSK) ist eine… … Deutsch Wikipedia**Frequenz-Shift-Keying**— Bildung eines binären FSK Signals. Oben: Quelldaten als eine Folge von logisch 1 und logisch 0. Mitte: Unmodulierte Trägerfrequenz Unten: Moduliertes FSK Signal. Die Frequenzumtastung (englisch Frequency Shift Keying, FSK) ist eine… … Deutsch Wikipedia