﻿

# Evolute

In the differential geometry of curves, the evolute of a curve is the locus of all its centers of curvature. Equivalently, it is the envelope of the normals to a curve. The original curve is an involute of its evolute. (Compare and )

History

Apollonius (c. 200 BC) discussed evolutes in Book V of his "Conics". However, Huygens is sometimes credited with being the first to study them (1673).

Definition

Let &gamma;("s") be a plane curve, parameterized by its arclength "s". The unit tangent vector to the curve is, by virtue of the arclength parameterization,

:$mathbf\left\{T\right\}\left(s\right) = gamma\text{'}\left(s\right)$

and the unit normal to the curve is the unit vector N("s") perpendicular to T("s") chosen so that the pair (T,N) is positively oriented.

The curvature "k" of &gamma; is defined by means of the equation

:$mathbf\left\{T\right\}\text{'}\left(s\right) = k\left(s\right)mathbf\left\{N\right\}\left(s\right)$

for each "s" in the domain of &gamma;. The radius of curvature is the reciprocal of curvature:

:$R\left(s\right) = frac\left\{1\right\}\left\{k\left(s\right)\right\}.$

The radius of curvature at &gamma;("s") is, in magnitude, the radius of the circle which forms the best approximation of the curve to second order at the point: that is, it is the radius of the circle making second order contact with the curve, the osculating circle. The sign of the radius of curvature indicates the direction in which the osculating circle moves if it is parameterized in the same direction as the curve at the point of contact: it is positive if the circle moves in a counterclockwise sense, and negative otherwise.

The center of curvature is the center of the osculating circle. It lies on the normal line through &gamma;("s") at a distance of "R" from &gamma;("s"), in the direction determined by the sign of "k". In symbols, the center of curvature lies at the point:

:$E\left(s\right) = gamma\left(s\right) + R\left(s\right)mathbf\left\{N\right\}\left(s\right) = gamma\left(s\right) + frac\left\{1\right\}\left\{k\left(s\right)\right\}mathbf\left\{N\right\}\left(s\right).$

As "s" varies, the center of curvature defined by this equation traces out a plane curve, the evolute of &gamma;.

General parameterizations

If &gamma;("t") is given a general parameterization other than the parameterization by arclength, say&gamma;("t") = ("x"("t"), "y"("t")), then the parametric equation of the evolute can be expressed in terms of the radius of curvature "R" = 1/"k" and the tangential angle &phi;, which is the angle the tangent to the curve makes with a fixed reference axis [the "x"-axis] . In terms of "R" and &phi;, the evolute has the parametric equation

:$\left(X,Y\right) = \left(x,y\right) + R mathbf\left\{N\right\} = \left(x-Rsinvarphi,y+Rcosvarphi\right)$

where the unit normal N = (−sin&phi;, cos&phi;) is obtained by rotating the unit tangent T = (cos&phi;, sin&phi;) through an angle of 90°.

The equation of the evolute may also be written entirely in terms of "x", "y" and their derivatives. Since:$\left(cos varphi, sin varphi\right) = frac\left\{\left(x\text{'}, y\text{'}\right)\right\}\left\{\left(x\text{'}^2+y\text{'}^2\right)^\left\{1/2$ and $R = 1/k = frac\left\{\left(x\text{'}^2+y\text{'}^2\right)^\left\{3/2\left\{x\text{'}y"-x"y\text{'}\right\},$

"R" and &phi; can be eliminated to obtain:

:$\left(X, Y\right)= left\left(x-y\text{'}frac\left\{x\text{'}^2+y\text{'}^2\right\}\left\{x\text{'}y"-x"y\text{'}\right\},; y+x\text{'}frac\left\{x\text{'}^2+y\text{'}^2\right\}\left\{x\text{'}y"-x"y\text{'}\right\} ight\right).$

Properties

;ArclengthSuppose that the curve &gamma; is parameterized with respect to its arclength "s". Then the arclength along the evolute "E" from "s"1 to "s"2 is given by:$int_\left\{s_1\right\}^\left\{s_2\right\}left|frac\left\{dR\right\}\left\{ds\right\} ight| ds.$Thus, if the curvature of &gamma; is strictly monotone, then:$int_\left\{s_1\right\}^\left\{s_2\right\}left|frac\left\{dR\right\}\left\{ds\right\} ight| ds = |R\left(s_2\right)-R\left(s_1\right)|.$Equivalently, denoting the arclength parameter of the curve "E" by &sigma;,:$frac\left\{dsigma\right\}\left\{ds\right\} = left|frac\left\{dR\right\}\left\{ds\right\} ight|.$

This follows by differentiation of the formula

:$E\left(s\right) = gamma\left(s\right) + R\left(s\right)mathbf\left\{N\right\}\left(s\right)$

and employing the Frenet identity N&prime;("s") = −"k"("s")T("s"):

:$E\text{'}\left(s\right) = gamma\text{'}\left(s\right) +R\text{'}\left(s\right)mathbf\left\{N\right\}\left(s\right) - mathbf\left\{T\right\}\left(s\right) = R\text{'}\left(s\right)mathbf\left\{N\right\}\left(s\right)$

whence

from which it follows that d&sigma;/d"s" = |d"R"/d"s"|, as claimed.

;Unit tangent vectorAnother consequence of (EquationNote|1) is that the tangent vector to the evolute "E" at "E"("s") is normal to the curve &gamma; at &gamma;("s").

;CurvatureThe curvature of the evolute "E" is obtained by differentiating "E" twice with respect to its arclength parameter &sigma;. Since d&sigma;/d"s" = |d"R"/d"s"|, it follows from (EquationNote|1) that

:$frac\left\{dE\right\}\left\{dsigma\right\} = left.frac\left\{dE\right\}\left\{ds\right\} ight/frac\left\{dsigma\right\}\left\{ds\right\} = pmmathbf\left\{N\right\}$

where the sign is that of d"R"/d"s". Differentiating a second time, and using the Frenet equation "N"&prime;("s") = −"k"("s")T("s") gives

:$frac\left\{d^2E\right\}\left\{dsigma^2\right\} = pmleft.frac\left\{dmathbf\left\{N\left\{ds\right\} ight/frac\left\{dsigma\right\}\left\{ds\right\} = -frac\left\{1\right\}\left\{RR\text{'}\right\}frac\left\{dE\right\}\left\{dsigma\right\}.$

As a consequence, the curvature of "E" is

:$k_E = -frac\left\{1\right\}\left\{RR\text{'}\right\}$

where "R" is the (signed) radius of curvature and the prime denotes the derivative with respect to "s".

;Relation with involute

;Intrinsic equationIf &phi; can be expressed as a function of "R", say &phi; = "g"("R"), then the Whewell equation for the evolute is &Phi; = "g"("R") + &pi;/2, where &Phi; is the tangential angle of the evolute and we take "R" as arclength along the evolute. From this we can derive the Cesàro equation as &Kappa; = "g"&prime;("R"), where &Kappa; is the curvature of the evolute.

Relationship between a curve and its evolute

By the above discussion, the derivative of ("X", "Y") vanishes when d"R"/d"s" = 0, so the evolute will have a cusp when the curve has a vertex, that is when the curvature has a local maximum or minimum. At a point of inflection of the original curve the radius of curvature becomes infinite and so ("X", "Y") will become infinite, often this will result in the evolute having an asymptote. Similarly, when the original curve has a cusp where the radius of curvature is 0 then the evolute will touch the original curve.

This can be seen in the figure to the right, the blue curve is the evolute of all the other curves. The cusp in the blue curve corresponds to a vertex in the other curves. The cusps in the green curve are on the evolute. Curves with the same evolute are parallel.

A curve with a similar definition is the radial of a given curve. For each point on the curve take the vector from the point to the center of curvature and translate it so that it begins at the origin. Then the locus of points at the end of such vectors is called the radial of the curve. The equation for the radial is obtained by removing the "x" and "y" terms from the equation of the evolute. Ths produces ("X", "Y") = (−"R" sin&phi;, "R" cos&phi;) or

:$\left(X, Y\right)= left\left(-y\text{'}frac\left\{x\text{'}^2+y\text{'}^2\right\}\left\{x\text{'}y"-x"y\text{'}\right\}, x\text{'}frac\left\{x\text{'}^2+y\text{'}^2\right\}\left\{x\text{'}y"-x"y\text{'}\right\} ight\right).$

Examples

* The evolute of a parabola is a semicubical parabola. The cusp of the latter curve is the center of curvature of the parabola at its vertex.

* The evolute of a Logarithmic spiral is a congruent spiral.

* The evolute of a cycloid is a similar cycloid.

References

* [http://mathworld.wolfram.com/Evolute.html Weisstein, Eric W. "Evolute." From MathWorld&mdash;A Wolfram Web Resource.]

* Yates, R. C.: "A Handbook on Curves and Their Properties", J. W. Edwards (1952), "Evolutes." pp. 86ff

* [http://www.2dcurves.com/derived/curvature.html#evolute Evolute on 2d curves.]

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Evolute — einer Kurve (Grundkurve) heißt die Enveloppe ihrer Normalen, zugleich der Ort ihrer Krümmungsmittelpunkte. Ist y = f(x) die Gleichung der Grundkurve, so erhält man die Gleichung der Evolute in ξ, µ durch Elimination von x aus: Ist x… …   Lexikon der gesamten Technik

• Evolute — Ev o*lute, n. [L. evolutus unrolled, p. p. of evolvere. See {Evolve}.] (Geom.) A curve from which another curve, called the involute or evolvent, is described by the end of a thread gradually wound upon the former, or unwound from it. See… …   The Collaborative International Dictionary of English

• Evolūte — (Math.), E. einer Curve od. krummen Linie heißt in der Geometrie eine solche krumme Linie, in der sich alle Krümmungshalbmesser derjenigen krummen Linie endigen, deren E. sie genannt wird …   Pierer's Universal-Lexikon

• Evolute — (lat.), s. Evolvente …   Meyers Großes Konversations-Lexikon

• Evolute — Evolūte (lat.), der geometr. Ort der Krümmungsmittelpunkte einer ebenen Kurve; wenn man einen Faden um die äußere Seite der E. wickelt, das eine Ende befestigt und dann beim Abwickeln des gespannten Fadens den Weg des andern Endes in der Ebene… …   Kleines Konversations-Lexikon

• Evolute — Evolute, lat. deutsch, die krumme Linie, auf welcher die Abwicklung eines Fadens stattfindet; Evolvente, die bei der Abwicklung gebildete krumme Linie von einem Ende des Fadens zum andern; deren Theorie ist in der Mechanik für die Construction… …   Herders Conversations-Lexikon

• évoluté — évoluté, ée (é vo lu té, tée) adj. Terme de zoologie. Se dit de coquilles univalves qui s enroulent dans le plan vertical, et dont la spire est plus ou moins allongée. ÉTYMOLOGIE    Voy. évolution …   Dictionnaire de la Langue Française d'Émile Littré

• evolute — [ev′ə lo͞ot΄] n. [< L evolutus: see EVOLUTION] Geom. a curve that is the locus of the center of curvature of another curve (called the involute); the envelope of the perpendiculars, or normals, of the involute: see INVOLUTE …   English World dictionary

• Evolute — Die Evolute einer ebenen Kurve ist die Bahn, auf der sich der Mittelpunkt des Krümmungskreises bewegt, wenn der Berührpunkt auf der Kurve entlang wandert. Oder auch: Die Evolute einer Kurve ist die Hüllkurve oder Enveloppe ihrer Normalen. Zur… …   Deutsch Wikipedia

• Evolute — Evo|lu|te 〈[ vo ] f. 19; Math.〉 der geometr. Ort der Krümmungsmittelpunkte einer Kurve [<lat. (linea) evoluta „abgewickelte (Linie)“] * * * Evolute   die, / n, der geometrische Ort der Krümmungsmittelpunkte einer ebenen Kurve. Die… …   Universal-Lexikon