﻿

# Helmholtz decomposition

In mathematics, in the area of vector calculus, Helmholtz's theorem, also known as the fundamental theorem of vector calculus, states that any sufficiently smooth, rapidly decaying vector field can be resolved into irrotational (curl-free) and solenoidal (divergence-free) component vector fields.

This implies that any vector field $mathbf\left\{F\right\}$ can be considered to be generated by a pair of potentials: a scalar potential $phi$ and a vector potential $mathbf\left\{A\right\}$.

The resulting Helmholtz decomposition of a vector field, which is twice continuously differentiable and with rapid enough decay at infinity, splits the vector field into a sum of gradient and curl as follows:: $mathbf\left\{F\right\} = - abla,mathcal\left\{G\right\} \left( abla cdot mathbf\left\{F\right\}\right) + abla imes mathcal\left\{G\right\}\left( abla imes mathbf\left\{F\right\}\right)$where $mathcal\left\{G\right\}$ represents the Newtonian potential operator.

If $ablacdotmathbf\left\{F\right\}=0$, we say $mathbf\left\{F\right\}$ is solenoidal or divergence-free and thus the Helmholtz decomposition of $mathbf\left\{F\right\}$ collapses to: $mathbf\left\{F\right\} = abla imes mathcal\left\{G\right\}\left( abla imes mathbf\left\{F\right\}\right) = abla imes mathbf\left\{A\right\}$In this case, $mathbf\left\{A\right\}$ is known as the "vector potential" for $mathbf\left\{F\right\}$.

Likewise, if $abla imesmathbf\left\{F\right\}=mathbf\left\{0\right\}$ then $mathbf\left\{F\right\}$ is said to be curl-free or irrotational and thus the Helmholtz decomposition of $mathbf\left\{F\right\}$ collapses then to: $mathbf\left\{F\right\} = - abla,mathcal\left\{G\right\} \left( abla cdot mathbf\left\{F\right\}\right) = - abla phi.$In this case, $phi$ is known as the "scalar potential" for $mathbf\left\{F\right\}$.

In general the negative gradient of the scalar potential is equated with the irrotational component, and the curl of the vector potential is equated with the solenoidal component::$mathbf\left\{F\right\} = - abla phi + abla imes mathbf\left\{A\right\}$.

Applicability to differential forms

The Hodge decomposition generalizes the Helmholtz decomposition from vector fields to differential forms.

Weaker formulation

The Helmholtz decomposition can also be generalized by reducing the regularity assumptions (the need for the existence of strong derivatives). Suppose $Omega$ is a bounded, simply-connected, Lipschitz domain. Every vector field $mathbf\left\{u\right\}in\left(L^2\left(Omega\right)\right)^3$ has an orthogonal decomposition::$mathbf\left\{u\right\}= ablaphi+mathrm\left\{curl\right\},mathbf\left\{A\right\}$where $phiin H^1\left(Omega\right)$ and $mathbf\left\{A\right\}in H\left(mathrm\left\{curl\right\},Omega\right)$. For a slightly smoother vector field $mathbf\left\{u\right\}in H\left(mathrm\left\{curl\right\},Omega\right)$, a similar decomposition holds::$mathbf\left\{u\right\}= ablaphi+mathbf\left\{v\right\}$where $phiin H^1\left(Omega\right)$ and $mathbf\left\{v\right\}in\left(H^1\left(Omega\right)\right)^d$.

Longitudinal and transverse fields

A terminology often used in physics is the curl-free component of a vector field is called the longitudinal component and the divergence-free component is called the transverse component. [ [http://arxiv.org/abs/0801.0335 [0801.0335 Longitudinal and transverse components of a vector field ] ] This terminology comes from the following construction: Compute the three-dimensional Fourier transform of the vector field F, which we call $ilde\left\{mathbf\left\{F$. Then decompose this field, at each point k, into two components, one of which points longitudinally, i.e. parallel to k, the other of which points in the transverse direction, i.e. perpendicular to k. So far, we have:$ilde\left\{mathbf\left\{F\left(mathbf\left\{k\right\}\right) = ilde\left\{mathbf\left\{F_l\left(mathbf\left\{k\right\}\right) + ilde\left\{mathbf\left\{F_t\left(mathbf\left\{k\right\}\right)$:$mathbf\left\{k\right\} cdot ilde\left\{mathbf\left\{F_t\left(mathbf\left\{k\right\}\right) = mathbf\left\{k\right\} imes ilde\left\{mathbf\left\{F_l\left(mathbf\left\{k\right\}\right) = 0$Now we apply an inverse Fourier transform to each of these components. Using properties of Fourier transforms, we derive::$mathbf\left\{F\right\} = mathbf\left\{F\right\}_t+mathbf\left\{F\right\}_l$:$abla cdot mathbf\left\{F\right\}_t = abla imes mathbf\left\{F\right\}_l = 0$so this is indeed the Helmholtz decomposition. [ [http://bohr.physics.berkeley.edu/classes/221/0708/notes/hamclassemf.pdf Online lecture notes by Robert Littlejohn] ]

References

General references

* George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists, 4th edition, Academic Press: San Diego (1995) pp. 92-93
* George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists International Edition, 6th edition, Academic Press: San Diego (2005) pp. 95-101

References for the weak formulation

* C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. "Vector potentials in three dimensional non-smooth domains." "Mathematical Methods in the Applied Sciences", 21, 823–864, 1998.
* R. Dautray and J.-L. Lions. "Spectral Theory and Applications," volume 3 of Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, 1990.
* V. Girault and P.A. Raviart. "Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms." Springer Series in Computational Mathematics. Springer-Verlag, 1986.

* [http://mathworld.wolfram.com/HelmholtzsTheorem.html Helmholtz theorem] on MathWorld

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Decomposition (disambiguation) — Decomposition may refer to the following: Decomposition, biological process through which organic material is reduced Chemical decomposition or analysis, in chemistry, is the fragmentation of a chemical compound into elements or smaller compounds …   Wikipedia

• Helmholtz theorem — There exist several theorems named after Hermann von Helmholtz. * Helmholtz theorem in vector calculus , also known as fundamental theorem of vector calculus ; see Helmholtz decomposition. * Helmholtz theorem in classical mechanics ; see… …   Wikipedia

• Helmholtz — Hermann Ludwig von Helmholtz Hermann von Helmholtz Hermann Ludwig Ferdinand von Helmholtz était un scientifique, physiologiste et acousticien, né le 31 août 1821 à Potsdam et décédé à Berlin en 1894. Il démarra sa carrière comme médecin …   Wikipédia en Français

• Hermann von Helmholtz — Infobox Scientist name = Hermann von Helmholtz |225px image width = 225px caption = Hermann Ludwig Ferdinand von Helmholtz birth date = birth date|1821|8|31|mf=y birth place = Potsdam, Kingdom of Prussia residence = Germany nationality = German… …   Wikipedia

• Vector decomposition — refers to decomposing a vector of Rn into several vectors, each linearly independent (in mutually distinct directions in the n dimensional space). Vector decomposition in two dimensions In two dimensions, a vector can be decomposed in many ways.… …   Wikipedia

• Poloidal toroidal decomposition — In vector analysis, a mathematical discipline, a three dimensional solenoidal vector field F can be considered to be generated by a pair of scalar potentials Psi; and Phi;:: mathbf{F} = abla imes Psi mathbf{k} + abla imes ( abla imes Phi… …   Wikipedia

• Theoreme de Helmholtz-Hodge — Théorème de Helmholtz Hodge Articles d analyse vectorielle …   Wikipédia en Français

• Théorème de Helmholtz-Hodge — Le théorème de Helmholtz Hodge est un théorème d analyse vectorielle qui exprime la décomposition d un champ vectoriel en une partie « polaire » et une partie « axiale ». Théorème de Helmoltz   Soit un champ de… …   Wikipédia en Français

• Hermann Ludwig von Helmholtz — Naissance 31 août 1821 Potsdam (Prusse) Décès 8 septe …   Wikipédia en Français

• Hermann Helmholtz — Hermann Ludwig von Helmholtz Hermann von Helmholtz Hermann Ludwig Ferdinand von Helmholtz était un scientifique, physiologiste et acousticien, né le 31 août 1821 à Potsdam et décédé à Berlin en 1894. Il démarra sa carrière comme médecin …   Wikipédia en Français