Timeline of knowledge about galaxies, clusters of galaxies, and large-scale structure

Timeline of galaxies, clusters of galaxies, and large-scale structure of the cosmos

Pre-20th Century

* 400s BC - Democritus proposes that the bright band in the night sky known as the Milky Way might consist of stars,
* 300s BC - Aristotle believes the Milky Way to be caused by "the ignition of the fiery exhalation of some stars which were large, numerous and close together" and that the "ignition takes place in the upper part of the atmosphere, in the region of the world which is continuous with the heavenly motions",cite web|author=Josep Puig Montada|title=Ibn Bajja|publisher=Stanford Encyclopedia of Philosophy|url=http://plato.stanford.edu/entries/ibn-bajja|date=September 28, 2007|accessdate=2008-07-11]
* 964 AD - Abd al-Rahman al-Sufi (Azophi), a Persian astronomer, makes the first recorded observations of the Andromeda Galaxycite book |last= Kepple |first= George Robert |coauthors= Glen W. Sanner |title= The Night Sky Observer's Guide, Volume 1 |publisher= Willmann-Bell, Inc. |year= 1998 |id= ISBN 0-943396-58-1 |pages=18] and the Large Magellanic Cloudcite web | title=Observatoire de Paris (Abd-al-Rahman Al Sufi) | url=http://messier.obspm.fr/xtra/Bios/alsufi.html | accessdate=2007-04-19 ] cite web | title=Observatoire de Paris (LMC) | url=http://messier.obspm.fr/xtra/ngc/lmc.html | accessdate=2007-04-19 ] in his "Book of Fixed Stars", and which are the first galaxies other than the Milky Way to be observed from Earth,
* 1000s - Abū Rayhān al-Bīrūnī, another Persian astronomer, describes the Milky Way galaxy as a collection of numerous nebulous stars, [MacTutor Biography|id=Al-Biruni|title=Abu Rayhan Muhammad ibn Ahmad al-Biruni]
* 1000s - Ibn al-Haytham (Alhazen), an Arabian astronomer, refutes Aristotle's theory on the Milky Way by making the first attempt at observing and measuring the Milky Way's parallax, [citation|title=Great Muslim Mathematicians|first=Mohaini|last=Mohamed|year=2000|publisher=Penerbit UTM|isbn=9835201579|pages=49-50] and he thus "determined that because the Milky Way had no parallax, it was very remote from the earth and did not belong to the atmosphere", [cite web|title=Popularisation of Optical Phenomena: Establishing the First Ibn Al-Haytham Workshop on Photography|author=Hamid-Eddine Bouali, Mourad Zghal, Zohra Ben Lakhdar|publisher=The Education and Training in Optics and Photonics Conference|year=2005|url=http://spie.org/etop/ETOP2005_080.pdf|accessdate=2008-07-08]
* 1100s - Ibn Bajjah (Avempace) of Islamic Spain proposes the Milky Way to be made up of many stars but that it appears to be a continuous image due to the effect of refraction in the Earth's atmosphere,
* 1300s - Ibn Qayyim Al-Jawziyya of Syria proposes the Milky Way galaxy to be "a myriad of tiny stars packed together in the sphere of the fixed stars" and that these stars are larger than planets,citation|title=Ibn Qayyim al-Jawziyyah: A Fourteenth Century Defense against Astrological Divination and Alchemical Transmutation|first=John W.|last=Livingston|journal=Journal of the American Oriental Society|volume=91|issue=1|date=1971|pages=96-103 [99] ]
* 1521 - Ferdinand Magellan observes the Magellanic Clouds during his circumnavigating expedition,
* 1610 - Galileo Galilei uses a telescope to determine that the bright band on the sky, the "Milky Way", is composed of many faint stars,
* 1750 - Thomas Wright discusses galaxies and the shape of the Milky Way,
* 1755 - Drawing on Wright's work, Immanuel Kant conjectures that the galaxy is a rotating disk of stars held together by gravity, and that the nebulae are separate such galaxies,
* 1845 - Lord Rosse discovers a nebula with a distinct spiral shape

Early 20th Century

* 1918 - Harlow Shapley demonstrates that globular clusters are arranged in a spheroid or halo whose center is not the Earth, decides, correctly, that its center is the center of the galaxy,
* 1920 - Harlow Shapley and Heber Curtis debate whether or not the spiral nebulae lie within the Milky Way,
* 1923 - Edwin Hubble resolves the Shapely-Curtis debate by finding Cepheids in Andromeda,
* 1930 - Robert Trumpler uses open cluster observations to quantify the absorption of light by interstellar dust in the galactic plane; this absorption had plagued earlier models of the Milky Way,
* 1932 - Karl Guthe Jansky discovers radio noise from the center of the Milky Way,
* 1933 - Fritz Zwicky applies the virial theorem to the Coma Cluster and obtains evidence for unseen mass,
* 1936 - Edwin Hubble introduces the spiral, barred spiral, elliptical, and irregular galaxy classifications,
* 1939 - Grote Reber discovers the radio source Cygnus A,
* 1943 - Carl Keenan Seyfert identifies six spiral galaxies with unusually broad emission lines, named Seyfert galaxies,
* 1949 - J.G. Bolton, G.J. Stanley, and O.B. Slee identify NGC 4486 (M87) and NGC 5128 as extragalactic radio sources,

Mid-20th Century

* 1953 - Gerard de Vaucouleurs discovers that the galaxies within approximately 200 million light years of the Virgo cluster are confined to a giant supercluster disk,
* 1954 - Walter Baade and Rudolph Minkowski identify the extragalactic optical counterpart of the radio source Cygnus A,
* 1959 - Hundreds of radio sources are detected by the Cambridge Interferometer which produces the 3C catalogue. Many of these are later found to be distant quasars and radio galaxies
* 1960 - Thomas Matthews determines the radio position of the "3C" source 3C 48 to within 5",
* 1960 - Allan Sandage optically studies 3C 48 and observes an unusual blue quasistellar object,
* 1962 - Cyril Hazard, M.B. Mackey, and A.J. Shimmins use lunar occultations to determine a precise position for the quasar 3C 273 and deduce that it is a double source,
* 1962 - Olin Eggen, Donald Lynden-Bell, and Allan Sandage theorize galaxy formation by a single (relatively) rapid monolithic collapse, with the halo forming first, followed by the disk.
* 1963 - Maarten Schmidt identifies the redshifted Balmer lines from the quasar 3C 273
* 1973 - Jeremiah Ostriker and James Peebles discover that the amount of visible matter in the disks of typical spiral galaxies is not enough for Newtonian gravitation to keep the disks from flying apart or drastically changing shape,
* 1973 - Donald Gudehus finds that the diameters of the brightest cluster galaxies have increased due to merging,
* 1974 - B.L. Fanaroff and J.M. Riley distinguish between edge-darkened (FR I) and edge-brightened (FR II) radio sources,
* 1976 - Sandra Faber and Robert Jackson discover the Faber-Jackson relation between the luminosity of an elliptical galaxy and the velocity dispersion in its center. In 1991 the relation is revised by Donald Gudehus,
* 1977 - R. Brent Tully and Richard Fisher publish the Tully-Fisher relation between the luminosity of an isolated spiral galaxy and the velocity of the flat part of its rotation curve,
* 1978 - Steve Gregory and Laird Thompson describe the Coma supercluster,
* 1978 - Donald Gudehus finds evidence that clusters of galaxies are moving at several hundred kilometers per second relative to the cosmic microwave background radiation,
* 1978 - Vera Rubin, Kent Ford, N. Thonnard, and Albert Bosma measure the rotation curves of several spiral galaxies and find significant deviations from what is predicted by the Newtonian gravitation of visible stars,
* 1978 - Leonard Searle and Robert Zinn theorize that galaxy formation occurs through the merger of smaller groups.

Late 20th Century

* 1981 - Robert Kirshner, August Oemler, Paul Schechter, and Stephen Shectman find evidence for a giant void in Boötes with a diameter of approximately 100 million light years,
* 1985 - Robert Antonucci and J. Miller discover that the Seyfert II galaxy NGC 1068 has broad lines which can only be seen in polarized reflected light,
* 1986 - Amos Yahil, David Walker, and Michael Rowan-Robinson find that the direction of the IRAS galaxy density dipole agrees with the direction of the cosmic microwave background temperature dipole,
* 1987 - David Burstein, Roger Davies, Alan Dressler, Sandra Faber, Donald Lynden-Bell, R.J. Terlevich, and Gary Wegner claim that a large group of galaxies within about 200 million light years of the Milky Way are moving together towards the "Great Attractor" in the direction of Hydra and Centaurus,
* 1989 - Margaret Geller and John Huchra discover the "Great Wall", a sheet of galaxies more than 500 million light years long and 200 million wide, but only 15 million light years thick,
* 1990 - Michael Rowan-Robinson and Tom Broadhurst discover that the IRAS galaxy IRAS F10214+4724 is the brightest known object in the Universe,
* 1991 - Donald Gudehus discovers a serious systematic bias in certain cluster galaxy data (surface brightness vs. radius parameter, and the D_n method) which affect galaxy distances and evolutionary history; he devises a new distance indicator, the reduced galaxian radius parameter, r_g, which is free of biases,
* 1992 - First detection of large-scale structure in the cosmic microwave background indicating the seeds of the first clusters of galaxies in the early Universe
* 1995 - First detection of small-scale structure in the cosmic microwave background
* 1995 - Hubble Deep Field survey of galaxies in field 144 arc seconds across.
* 1998 - The 2dF Galaxy Redshift Survey maps the large scale structure in a section of the Universe close to the Milky Way
* 1998 - Hubble Deep Field South
* 1998 - Discovery of accelerating universe
* 2000 - Data from several cosmic microwave background experiments give strong evidence that the Universe is "flat" (space is not curved, although space-time is), with important implications for the formation of large-scale structure

Early 21st Century

* 2001 - First data release from the on-going Sloan Digital Sky Survey
* 2004 - The European Southern Observatory discovers Abell 1835 IR1916, the most distant galaxy yet seen from Earth.
* 2004 - The Arcminute Microkelvin Imager begins to map the distribution of distant clusters of galaxies

ee also

* Large-scale structure of the cosmos

References


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Timeline of astronomy — Timeline of astronomy2500 BCMany ancient sites are thought to have astronomical significance, such as the Ancient Egyptian pyramids, Harappan shell instruments, British megaliths, and buildings in China and Latin America.In Lothal, the ancient… …   Wikipedia

  • Galaxy — This article is about the astronomical structure. For other uses, see Galaxy (disambiguation). NGC 4414, a typical spiral galaxy in the constellation Coma Berenices, is about 55,000 light years in diameter and approximately 60 million light… …   Wikipedia

  • Astrophysics — is the branch of astronomy that deals with the physics of the universe, including the physical properties (luminosity, density, temperature, and chemical composition) of celestial objects such as stars, galaxies, and the interstellar medium, as… …   Wikipedia

  • List of timelines — This is a list of timelines. Types of timelines * Living graph * Logarithmic timeline: Detailed logarithmic timeline * Synchronoptic view General timelines * List of last occurrences * List of centuries (13 billion BC – 1 googol) * List of time… …   Wikipedia

  • Portal:Contents/Lists — Overview · Lists · Outlines · Portals · Categories · Glossaries · Indexes …   Wikipedia

  • Outer space — For other uses, see Outer space (disambiguation). The boundaries between the Earth s surface and outer space, at the Kármán line, 100 km (62 mi) and exosphere at 690 km (430 mi). Not to scale Outer space is the void that exists beyond any… …   Wikipedia

  • General relativity — For a generally accessible and less technical introduction to the topic, see Introduction to general relativity. General relativity Introduction Mathematical formulation Resources …   Wikipedia

  • Natural scientific research in Canada — This article outlines the history of natural scientific research in Canada, including mathematics, physics, astronomy, space science, geology, oceanography, chemistry, biology, medical research and psychology. The social sciences are not treated… …   Wikipedia

  • Physics — (Greek: physis φύσις), in everyday terms, is the science of matter [R. P. Feynman, R. B. Leighton, M. Sands (1963), The Feynman Lectures on Physics , ISBN 0 201 02116 1 Hard cover. p.1 1 Feynman begins with the atomic hypothesis.] and its motion …   Wikipedia

  • Definition of planet — Photograph of the crescent planet Neptune (top) and its moon Triton (center) …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.