Non-measurable set

This page gives a general overview of the concept of non-measurable sets. For a precise definition of measure, see Measure (mathematics). For various constructions of non-measurable sets, see Vitali set, Hausdorff paradox, and Banach–Tarski paradox.

In mathematics, a non-measurable set is a set whose structure is so complicated that it cannot be assigned any meaningful measure. Such sets are constructed to shed light on the notions of length, area and volume in formal set theory.

The notion of a non-measurable set has been a source of great controversy since its introduction. Intuition suggests to many people that any subset S of the unit disk (or unit line) should have a measure, because one can throw darts at the disk (see Freiling's axiom of symmetry), and the probability of landing in S is the measure of the set.

Historically, this led Borel and Kolmogorov to formulate probability theory on sets which are constrained to be measurable. The measurable sets on the line are iterated countable unions and intersections of intervals (called Borel sets) plus-minus null sets. These sets are rich enough to include every conceivable definition of a set that arises in standard mathematics, but they require a lot of formalism to prove that sets are measurable.

In 1965, Solovay constructed Solovay's model, which shows that it is consistent with standard set theory, excluding uncountable choice, that all subsets of the reals are measurable.


Historical constructions

The first indication that there might be a problem in defining length for an arbitrary set came from Vitali's theorem.[citation needed]

When you form the union of two disjoint sets, one would expect the measure of the result to be the sum of the measure of the two sets. A measure with this natural property is called finitely additive. While a finitely additive measure is sufficient for most intuition of area, and is analogous to Riemann integration, it is considered insufficient for probability, because conventional modern treatments of sequences of events or random variables demand countable additivity.

In this respect, the plane is similar to the line; there is a finitely additive measure, extending Lebesgue measure, which is invariant under all isometries. When you increase in dimension the picture gets worse. The Hausdorff paradox and Banach–Tarski paradox show that you can take a three dimensional ball of radius 1, dissect it into 5 parts, move and rotate the parts and get two balls of radius 1. Obviously this construction has no meaning in the physical world. In 1989, A. K. Dewdney published a letter from his friend Arlo Lipof in the Computer Recreations column of the Scientific American where he describes an underground operation "in a South American country" of doubling gold balls using the Banach–Tarski paradox.[1] Naturally, this was in the April issue, and "Arlo Lipof" is an anagram of "April Fool".


Consider the unit circle S, and the action on S by a group G consisting of all rational rotations. Namely, these are rotations by angles which are rational multiples of π. Here G is countable (more specifically, G is isomorphic to \mathbb{Q}/\mathbb{Z}) while S is uncountable. Hence S breaks up into uncountably many orbits under G. Using the axiom of choice, we could pick a single point from each orbit, obtaining an uncountable subset X \subset S with the property that all of its translates by G are disjoint from X and from each other. In other words, the circle gets partitioned into a countable collection of disjoint sets, which are all pairwise congruent (by rational rotations). The set X will be non-measurable if the measure is assumed to be a countably additive probability measure. Namely, if X has zero measure, countable additivity would imply that the whole circle has zero measure. If X has positive measure, countable additivity would show that the circle has infinite measure.

Consistent definitions of measure and probability

The Banach–Tarski paradox shows that there is no way to define volume in three dimensions unless one of the following four concessions is made:

  1. The volume of a set might change when it is rotated
  2. The volume of the union of two disjoint sets might be different from the sum of their volumes
  3. Some sets might be tagged "non-measurable" and one would need to check if a set is "measurable" before talking about its volume
  4. The axioms of ZFC (Zermelo–Fraenkel set theory with the axiom of Choice) might have to be altered

Standard measure theory takes the third option. One defines a family of measurable sets which is very rich, and almost any set explicitly defined in most branches of mathematics will be among this family. It is usually very easy to prove that a given specific subset of the geometric plane is measurable. The fundamental assumption is that a countably infinite sequence of disjoint sets satisfies the sum formula, a property called σ-additivity.

In 1970, Solovay demonstrated that the existence of a non-measurable set for Lebesgue measure is not provable within the framework of Zermelo–Fraenkel set theory in the absence of the Axiom of Choice, by showing that (assuming the consistency of an inaccessible cardinal) there is a model of ZF, called Solovay's model, in which countable choice holds, every set is Lebesgue measurable and in which the full axiom of choice fails.

The Axiom of Choice is equivalent to a fundamental result of point-set topology, Tychonoff's theorem, and also to the conjunction of two fundamental results of functional analysis, the Banach–Alaoglu theorem and the Krein–Milman theorem. It also affects the study of infinite groups to a large extent, as well as ring and order theory (see Boolean prime ideal theorem). However the axioms of determinacy and dependent choice, together, are sufficient for most geometric measure theory, potential theory, Fourier series and Fourier transforms, while making all subsets of the real line Lebesgue measurable.

See also



  1. ^ Dewdney (1989)


  • Dewdney, A. K. (1989). "A matter fabricator provides matter for thought". Scientific American (April): 116–119. 

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Non-Borel set — In mathematics, a non Borel set is a set that cannot be obtained from simple sets by taking complements and at most countable unions and intersections. (For the definition see Borel set.) Only sets of real numbers are considered in this article.… …   Wikipedia

  • Measurable function — In mathematics, particularly in measure theory, measurable functions are structure preserving functions between measurable spaces; as such, they form a natural context for the theory of integration. Specifically, a function between measurable… …   Wikipedia

  • Measurable cardinal — In mathematics, a measurable cardinal is a certain kind of large cardinal number. Contents 1 Measurable 2 Real valued measurable 3 See also 4 References …   Wikipedia

  • Set theory — This article is about the branch of mathematics. For musical set theory, see Set theory (music). A Venn diagram illustrating the intersection of two sets. Set theory is the branch of mathematics that studies sets, which are collections of objects …   Wikipedia

  • Non-invasive intracranial pressure measurement methods — Increased intracranial pressure (ICP) is one of the major causes of secondary brain ischemia that accompanies a variety of pathological conditions, most notably, traumatic brain injury (TBI), stroke, and intracranial hemorrhages. However, aside… …   Wikipedia

  • Vitali set — In mathematics, a Vitali set is an elementary example of a set of real numbers that is not Lebesgue measurable. The Vitali theorem is the existence theorem that there are such sets. It is a non constructive result. The naming is for Giuseppe… …   Wikipedia

  • Borel set — In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named… …   Wikipedia

  • Null set — In mathematics, a null set is a set that is negligible in some sense. For different applications, the meaning of negligible varies. In measure theory, any set of measure 0 is called a null set (or simply a measure zero set). More generally,… …   Wikipedia

  • Schroeder-Bernstein theorem for measurable spaces — The Cantor Bernstein Schroeder theorem of set theory has a counterpart for measurable spaces, sometimes called the Borel Schroeder Bernstein theorem , since measurable spaces are also called Borel spaces. This theorem, whose proof is quite easy,… …   Wikipedia

  • List of set theory topics — Logic portal Set theory portal …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.