# Indefinite inner product space

In

mathematics , in the field offunctional analysis , an**indefinite inner product space**:$(K,\; langle\; cdot,,cdot\; angle,\; J)$

is an infinite-dimensional complex

vector space $K$ equipped with both an indefiniteinner product :$langle\; cdot,,cdot\; angle$

and a positive semi-definite inner product

:$(x,,y)\; stackrel\{mathrm\{def\{=\}\; langle\; x,,Jy\; angle$,

where the

metric operator $J$ is an endomorphism of $K$ obeying:$J^3\; =\; J$.

The indefinite inner product space itself is not necessarily a

Hilbert space ; but the existence of a positive semi-definite inner product on $K$ implies that one can form aquotient space on which there is a positive definite inner product. Given a strong enoughtopology on this quotient space, it has the structure of a Hilbert space, and many objects of interest in typical applications fall into this quotient space.An indefinite inner product space is called a

**Krein space**(or $J$"-space") if $(x,,y)$ is positive definite and $K$ possesses amajorant topology . Krein spaces are named in honor of the Ukrainian mathematicianMark Grigorievich Krein (3 April 1907 -17 October 1989 ).**Inner products and the metric operator**Consider a complex

vector space $K$ equipped with an indefinitehermitian form $langle\; cdot\; ,,\; cdot\; angle$. In the theory of Krein spaces it is common to call such ahermitian form an**indefinite inner product**. The following subsets are defined in terms of thesquare norm induced by the indefinite inner product::$K\_\{0\}\; stackrel\{mathrm\{def\{=\}\; \{\; x\; in\; K\; :\; langle\; x,,x\; angle\; =\; 0\; \}$ ("neutral"):$K\_\{++\}\; stackrel\{mathrm\{def\{=\}\; \{\; x\; in\; K\; :\; langle\; x,,x\; angle\; >\; 0\; \}$ ("positive"):$K\_\{--\}\; stackrel\{mathrm\{def\{=\}\; \{\; x\; in\; K\; :\; langle\; x,,x\; angle\; <\; 0\; \}$ ("negative"):$K\_\{+0\}\; stackrel\{mathrm\{def\{=\}\; K\_\{++\}\; cup\; K\_\{0\}$ ("non-negative"):$K\_\{-0\}\; stackrel\{mathrm\{def\{=\}\; K\_\{--\}\; cup\; K\_\{0\}$ ("non-positive")

A

subspace $L\; subset\; K$ lying within $K\_\{0\}$ is called a "neutral subspace". Similarly, a subspace lying within $K\_\{+0\}$ ($K\_\{-0\}$) is called "positive" ("negative") "semi-definite", and a subspace lying within $K\_\{++\}\; cup\; \{0\}$ ($K\_\{--\}\; cup\; \{0\}$) is called "positive" ("negative") "definite". A subspace in any of the above categories may be called "semi-definite", and any subspace that is not semi-definite is called "indefinite".Let our indefinite inner product space also be equipped with a decomposition into a pair of subspaces $K\; =\; K\_+\; oplus\; K\_-$, called the "fundamental decomposition", which respects the complex structure on $K$. Hence the corresponding linear projection operators $P\_pm$ coincide with the identity on $K\_pm$ and annihilate $K\_mp$, and they commute with multiplication by the $i$ of the complex structure. If this decomposition is such that $K\_+\; subset\; K\_\{+0\}$ and $K\_-\; subset\; K\_\{-0\}$, then $K$ is called an

**indefinite inner product space**; if $K\_pm\; subset\; K\_\{pmpm\}\; cup\; \{0\}$, then $K$ is called a**Krein space**, subject to the existence of amajorant topology on $K$.The operator $J\; stackrel\{mathrm\{def\{=\}\; P\_+\; -\; P\_-$ is called the (real phase) "metric operator" or "fundamental symmetry", and may be used to define the "Hilbert inner product" $(cdot,,cdot)$:

:$(x,,y)\; stackrel\{mathrm\{def\{=\}\; langle\; x,,Jy\; angle\; =\; langle\; x,,P\_+\; y\; angle\; -\; langle\; x,,P\_-\; y\; angle$

On a Krein space, the Hilbert inner product is positive definite, giving $K$ the structure of a Hilbert space (under a suitable topology). Under the weaker constraint $K\_pm\; subset\; K\_\{pm0\}$, some elements of the neutral subspace $K\_0$ may still be neutral in the Hilbert inner product, but many are not. For instance, the subspaces $K\_0\; cap\; K\_pm$ are part of the neutral subspace of the Hilbert inner product, because an element $k\; in\; K\_0\; cap\; K\_pm$ obeys $(k,,k)\; stackrel\{mathrm\{def\{=\}\; langle\; k,,Jk\; angle\; =\; pm\; langle\; k,,k\; angle\; =\; 0$. But an element $k\; =\; k\_+\; +\; k\_-$ ($k\_pm\; in\; K\_pm$) which happens to lie in $K\_0$ because $langle\; k\_-,,k\_-\; angle\; =\; -\; langle\; k\_+,,k\_+\; angle$ will have a positive square norm under the Hilbert inner product.

We note that the definition of the indefinite inner product as a Hermitian form implies that:

:$langle\; x,,y\; angle\; =\; frac\{1\}\{4\}\; (langle\; x+y,,x+y\; angle\; -\; langle\; x-y,,x-y\; angle)$

Therefore the indefinite inner product of any two elements $x,,y\; in\; K$ which differ only by an element $x-y\; in\; K\_0$ is equal to the square norm of their average $frac\{x+y\}\{2\}$. Consequently, the inner product of any non-zero element $k\_0\; in\; (K\_0\; cap\; K\_pm)$ with any other element $k\_pm\; in\; K\_pm$ must be zero, lest we should be able to construct some $k\_pm\; +\; 2\; lambda\; k\_0$ whose inner product with $k\_pm$ has the wrong sign to be the square norm of $k\_pm\; +\; lambda\; k\_0\; in\; K\_pm$.

Similar arguments about the Hilbert inner product (which can be demonstrated to be a Hermitian form, therefore justifying the name "inner product") lead to the conclusion that its neutral space is precisely $K\_\{00\}\; =\; (K\_0\; cap\; K\_+)\; oplus\; (K\_0\; cap\; K\_-)$, that elements of this neutral space have zero Hilbert inner product with any element of $K$, and that the Hilbert inner product is positive semi-definite. It therefore induces a positive definite inner product (also denoted $(cdot,,cdot)$) on the quotient space $ilde\{K\}\; stackrel\{mathrm\{def\{=\}\; K\; /\; K\_\{00\}$, which is the direct sum of $ilde\{K\}\_pm\; stackrel\{mathrm\{def\{=\}\; K\_pm\; /\; (K\_0\; cap\; K\_pm)$. Thus $(\; ilde\{K\},,(cdot,,cdot))$ is a

Hilbert space (given a suitable topology).**Properties and applications**Krein spaces arise naturally in situations where the indefinite inner product has an analytically useful property (such as

Lorentz invariance ) which the Hilbert inner product lacks. It is also common for one of the two inner products, usually the indefinite one, to be globally defined on a manifold and the other to be coordinate-dependent and therefore defined only on a local section.In many applications the positive semi-definite

inner product $(cdot,,cdot)$ depends on the chosen fundamental decomposition, which is, in general, not unique. But it may be demonstrated (e. g., cf. Proposition 1.1 and 1.2 in the paper of H. Langer below) that any two metric operators $J$ and $J^prime$ compatible with the same indefinite inner product on $K$ result in Hilbert spaces $ilde\{K\}$ and $ilde\{K\}^prime$ whose decompositions $ilde\{K\}\_pm$ and $ilde\{K\}^prime\_pm$ have equal dimensions. Although the Hilbert inner products on these quotient spaces do not generally coincide, they induce identical square norms, in the sense that the square norms of the equivalence classes $ilde\{k\}\; in\; ilde\{K\}$ and $ilde\{k\}^prime\; in\; ilde\{K\}^prime$ into which a given $k\; in\; K$ falls are equal. All topological notions in a Krein space, likecontinuity ,closed -ness of sets, and thespectrum of anoperator on $ilde\{K\}$, are understood with respect to this Hilbert spacetopology .**Isotropic part and degenerate subspaces**Let $L$, $L\_\{1\}$, $L\_\{2\}$ be subspaces of $K$. The

subspace $L^\{\; [perp]\; \}\; stackrel\{mathrm\{def\{=\}\; \{\; x\; in\; K\; :\; langle\; x,,y\; angle\; =\; 0$ for all $y\; in\; L\; \}$ is called the**orthogonal companion**of $L$, and $L^\{0\}\; stackrel\{mathrm\{def\{=\}\; L\; cap\; L^\{\; [perp]\; \}$ is the**isotropic**part of $L$. If $L^\{0\}\; =\; \{0\}$, $L$ is called**non-degenerate**; otherwise it is**degenerate**. If $langle\; x,,y\; angle\; =\; 0$ for all $x\; in\; L\_\{1\},,,\; y\; in\; L\_\{2\}$, then the two subspaces are said to be**orthogonal**, and we write $L\_\{1\}\; [perp]\; L\_\{2\}$. If $L\; =\; L\_\{1\}\; +\; L\_\{2\}$ where $L\_\{1\}\; [perp]\; L\_\{2\}$, we write $L\; =\; L\_\{1\}\; [+]\; L\_\{2\}$. If, in addition, this is adirect sum , we write $L=\; L\_\{1\}\; [dot\{+\}]\; L\_\{2\}$.**Pontrjagin space**If $kappa\; :=\; min\; \{\; dim\; K\_\{+\},\; dim\; K\_\{-\}\; \}\; <\; infty$, the Krein space $(K,\; langle\; cdot,,cdot\; angle,\; J)$ is called a

**Pontrjagin space**or $Pi\_\{kappa\}$-**space**. (Conventionally, the indefinite inner product is given the sign that makes $dim\; K\_\{+\}$ finite.) In this case $dim\; K\_\{+\}$ is known as the "number of positive squares" of $langle\; cdot,,cdot\; angle$. Pontrjagin spaces are named afterLev Semenovich Pontryagin .**Literature*** Bognár, J. : "Indefinite inner product spaces", Springer-Verlag, Berlin-Heidelberg-New York, 1974, ISBN 3-540-06202-5.

* Springer "Encyclopaedia of Mathematics" entry for "Krein space", contributed by H. Langer (http://eom.springer.de/k/k055840.htm)

* Azizov, T.Ya.; Iokhvidov, I.S. : "Linear operators in spaces with an indefinite metric", John Wiley & Sons, Chichester, 1989, ISBN 0-471-92129-7.

* Langer, H. : "Spectral functions of definitizable operators in Krein spaces", Functional Analysis Proceedings of a conference held at Dubrovnik, Yugoslavia, November 2-14, 1981, Lecture Notes in Mathematics,**948**, Springer-Verlag Berlin-Heidelberg-New York, 1982, 1-46, ISSN 0075-8434.**References**

*Wikimedia Foundation.
2010.*

### Look at other dictionaries:

**Indefinite orthogonal group**— In mathematics, the indefinite orthogonal group, O( p , q ) is the Lie group of all linear transformations of a n = p + q dimensional real vector space which leave invariant a nondegenerate, symmetric bilinear form of signature ( p , q ). The… … Wikipedia**Minkowski space**— A diagram of Minkowski space, showing only two of the three spacelike dimensions. For spacetime graphics, see Minkowski diagram. In physics and mathematics, Minkowski space or Minkowski spacetime (named after the mathematician Hermann Minkowski)… … Wikipedia**Pseudo-Euclidean space**— A pseudo Euclidean space is a finite dimensional real vector space together with a non degenerate indefinite quadratic form. Such a quadratic form can, after a change of coordinates, be written as : q(x) = left(x 1^2+cdots + x k^2 ight) left(x… … Wikipedia**List of mathematics articles (I)**— NOTOC Ia IA automorphism ICER Icosagon Icosahedral 120 cell Icosahedral prism Icosahedral symmetry Icosahedron Icosian Calculus Icosian game Icosidodecadodecahedron Icosidodecahedron Icositetrachoric honeycomb Icositruncated dodecadodecahedron… … Wikipedia**Иохвидов, Иосиф Семёнович**— Иосиф Семёнович Иохвидов Дата рождения … Википедия**Split-complex number**— A portion of the split complex number plane showing subsets with modulus zero (red), one (blue), and minus one (green). In abstract algebra, the split complex numbers (or hyperbolic numbers) are a two dimensional commutative algebra over the real … Wikipedia**Eigenvalues and eigenvectors**— For more specific information regarding the eigenvalues and eigenvectors of matrices, see Eigendecomposition of a matrix. In this shear mapping the red arrow changes direction but the blue arrow does not. Therefore the blue arrow is an… … Wikipedia**Linear map**— In mathematics, a linear map, linear mapping, linear transformation, or linear operator (in some contexts also called linear function) is a function between two vector spaces that preserves the operations of vector addition and scalar… … Wikipedia**Definite bilinear form**— In mathematics, a definite bilinear form is a bilinear form B over some vector space V (with real or complex scalar field) such that the associated quadratic form is definite, that is, has a real value with the same sign (positive or negative)… … Wikipedia**Orthogonal group**— Group theory Group theory … Wikipedia