The Transrapid is a maglev high speed train that can be used for both passenger services and goods transportation. It is manufactured and marketed by [ Transrapid Intl. GmbH & Co. KG] , a partnership of Siemens and ThyssenKrupp. Technically speaking, this is a magnetically levitating train that works on the Longstator linear motor principle.

Basic Principle

The Transrapid system functions mainly on three components:

The magnetic levitation system of the train acts with the longstator linear motor (LLM) situated beneath the guideway (Track). The vehicle levitates above the guideway and as a result the system is completely contact free. The propulsion magnet (Longstator motor) is fixed to the underside of the guideway. Power must be continuously supplied to levitate the train, but a benefit of this is that there is none of the rolling friction that applies to conventional railed vehicles. However, the magnetic force induced within the vehicles levitation system can cause a significant electrical resistance.

The active part of the drive system which moves the vehicle is not located within the vehicle itself (As is the case with other vehicles) but instead is located within the guideway. This longstator drive system is comparable to a standard three phase AC electric motor, where the stator has been cut open, unrolled, and attached lengthways along the guideway. The rotor section of this motor is likewise comparable to having been unrolled and attached to the levitation system of the vehicle. This technique means that electrically, the vehicle and guideway form a single unit. The vehicle is both accelerated and decelerated by inducing a three phase current into the LLM, which creates a traveling magnetic field to move the vehicle. The speed of the vehicle is determined by the frequency (Cycles per second, or Hz) of the current induced within the LLM, which in turn determines the speed of the traveling magnetic field. This has three notable consequences:

*The drive system is not installed in the vehicle but instead in the guideway, and can be configured over the traveling distance independently of the weight or location of the vehicle. The maximum possible acceleration and speed for the duration of the journey can be planned in advance through prior adjustment of each section of the guideway.

*The drive system has an apparently higher effect on the management of services in comparison to the wheel and rail system used on conventional railways. This means that the route, speed, and spacing between vehicles is determined even before the journey has commenced.

*A minimum separation distance (Normally 10mm) between the vehicle and the guideway must be included to allow for counteraction of any undesired vertical and lateral movement of the vehicle whilst in operation. Therefore the distance between the rotor and stator elements of the drive system are greater than that normally found in rotary electric motors. Although the efficiency of such electrical (Solid-state) machinery is substantially affected by the separation distance between these components, this effect is less noticeable with the Transrapid system than with conventional electric motors.A requirement for this kind of vehicle technology is that the vehicle levitation system must act on the guideway drive system (LLM) from beneath, and the separation distance between these components must not be too great. Therefore close tolerances and accuracy during manufacture of the system are paramount. The available designs of guideway are manufactured of either steel, concrete, or a hybrid of both materials that uses a concrete supporting beam with steel rails.

The Transrapid system

System speed

The current design speed of the Transrapid lies between 500 and 550 km/h.In order to achieve good overall journey times, high acceleration and short stop durations are just as important as a high cruising speed. The Transrapid has far better acceleration than conventional high-speed rail systems, and is able to accelerate from a standing start to 200 km/h within 60 seconds, and further to 400 km/h in only an additional 60 seconds. To accelerate from a standing start to 300 km/h, the Transrapid needs approximateley 5 km of guideway. On the Shanghai Transrapid system, this acceleration is generally achieved within 4.2 km of guideway. In theory, the system could be adjusted to at least double the acceleration, but lower levels are maintained in practice to ensure passenger comfort.

See the Technical Data for more comprehensive statistics.

The system makes it theoretically possible to master pitch attitudes of up to 100 parts per thousand. Depending upon the size of the project, a distinct advantage can often be attained over conventional railway design.

Freight possibilities

In general terms, the Transrapid is only economically viable for the transportation of light freight where fast transportation is desired, due to the active levitation technology. The vehicle design can accommodate standard aviation freight containers, with a maximum payload of 15 metric tonnes per car.

Energy requirements

The normal energy consumption of the Transrapid is approximately 50-100 kW per section for levitation and travel, as well as for vehicle regulation. The draw coefficient cw value of the Transrapid is about 0.26. The air resistance of the vehicle with frontal area of 16 m² requires a power consumption, at 400 km/h (111 m/s) cruising speed, given by the following formula:

P = c_w cdot A_{ m Front} cdot v^3 cdot (mbox{Density of surrounding air})/2egin{matrix}P &=& 0{.}26 cdot 16,mathrm{m}^2 cdot (111,mathrm{m}/mathrm{s})^3 cdot 1{.}24,mathrm{kg}/mathrm{m}^3 /2 \\P &=& 3{.}53cdot10^6,mathrm{kg}cdotmathrm{m}^2/mathrm{s}^3 = 3{.}53cdot10^6,mathrm{N}cdotmathrm{m}/mathrm{s} = 3{.}53,mathrm{MW}end{matrix}

This power compares favorably with other high speed rail systems. With an efficiency of 0.85, the power required is about 4.2MW. Energy consumption for levitation and guidance purposes equates to approximately 1.7 kW/t. As the propulsion system is also capable of functioning in reverse, energy is transferred back into the electricity network during braking. An exception to this is when an emergency stop is performed using the emergency landing skids beneath the vehicle, although this method of bringing the vehicle to a stop is intended only as a last resort should it be impossible or undesirable to keep the vehicle levitating on back-up power to a natural halt.

Land requirements

An elevated guideway allows the Transrapid to be constructed around existing infrastructure without presenting an obstacle to existing forms of transportation. The total width of the single track used at the Emsland test facility is approximately 10 m. This width includes the guideway itself, the adjacent service road and the necessary safety margin between the gauge of the Transrapid and other existing objects, such as trees. A service road such as that used at the Emsland facility is not a necessity in commercial installations of the Transrapid system, as the Shanghai Transrapid clearly shows. Therefore the amount of land required is reduced accordingly. However, an elevated route is not a necessity for the operation of the Transrapid system and can prove more costly, (Not accounting for specially required structures such as bridges etc.) in preference to installing the guideway at ground level.

Wear and tear

The Transrapid system is to a large extent wear free, because the vehicle and guideway do not come into direct contact with each other. However, wear does occur though other mechanical, electrical and chemical processes such as maintenance and natural ageing, which will affect both the guideway (Including the LLM) and the vehicle throughout the life-span of the installation. Additionally, the mechanical suspension element of the train - i.e. springs, stabilizers and shock absorbers, will undoubtedly wear and eventually require servicing.

Noise pollution

The Transrapid system does not produce the rolling or friction noise commonly associated with conventional railways. However, noise is produced at higher speeds due to wind resistance. For example: When traveling at 400 km/h, a passing sound level of 89 dBA can be recorded at a distance of 25 m. However, the noise produced can also depend on the type of guideway in use. In comparison, a Deutsche Bahn ICE 3 traveling at 300 km/h produces noise between 81.8 - 96.8 dBA, depending upon the quality of the track at the given location. [] (German language)


As the design of the Transrapid means that the train "wraps around" the guideway, derailment of a Transrapid vehicle is considerably less likely (If not impossible) compared to a conventional railway train. Due to the nature of the propulsion system - i.e. the track propels the vehicle, and only in one direction, two trains are unable to travel in opposite directions simultaneously on the same section of track, thus making head on collisions impossible. While this is often advertised as a major safety advantage, in practice it is highly unlikely to be fully effective at preventing a head on collision if two trains were to approach each other at high speed. However, due to various failsafes and checks, it is always ensured that only one Transrapid vehicle is in a given section of route at any one time.

In the event of a power failure causing a vehicle to come to a halt between stations, no danger is posed to the passengers on board. Evacuation in the event of a fire or similar emergency is possible through the use of rescue ladders/ropes that are carried on board all Transrapid vehicles for use should a train need to be evacuated whilst on an elevated guideway section. These ladders/ropes are hung on to hooks provided within the exterior doorways, allowing passengers to climb/slide to ground level. Additionally, emergency "access platforms" are to be introduced along longer tracks, and spaced in such a way that no matter where or when a power failure occurs, a moving Transrapid vehicle will always be able to glide to a control stop at either an access platform or station on backup power alone, allowing passengers to comfortably walk off the train if required.

In the event of prolonged low speed travel, it is possible that the back-up power source on board the train may become exhausted as high speed travel is necessary for the train to generate and store electricity collected via magnetic induction from the linear motor on the guideway. The next generation of Transrapid vehicles (The TR-09) will work around this problem by generating electricity through the application of a high frequency power induction system.

Due to the high speeds attained by the Transrapid system, a considerable danger could be posed by failure of a guideway section or support column en-route, possibly caused by a road vehicle colliding with the support column, or natural wear and tear. Such potential issues however are addressed before they become a problem as the guideway is automatically monitored continuously by internal sensors and cameras mounted on board the vehicles.

Construction costs

Cost estimates for the construction of a Transrapid system are roughly the same as those for a comparable conventional railway system. The cost of the Shanghai Transrapid was approximately EUR 30,000,000 (about $ 40,200,000) per kilometer. A 170 km (106.25 miles) extension of the Shanghai Transrapid from Longyang Road to Hangzhou is planned, with cost estimates in the range of EUR 19,000,000 (about $ 25,460,000) per kilometer.


As the Transrapid is conceived as a high-speed system, connections with airports and other facilities via slow regional railway services could be considered undesirable to most passengers.

The Transrapid is therefore an attractive solution for urban routes where the Transrapid could be supplemented by local light rail, bus and road networks. In crowded metropolitan areas, the Transrapid could connect city centres with their associated airports situated outside of the city. Other point-to-point connections between local stations and airports are also an attractive proposition, provided that the distances involved are not too short. In principle, a similar function is performed (Albeit on a smaller scale) by the Wuppertal Suspended Railway.

For obvious reasons, it is not possible to run a Transrapid vehicle on a conventional rail line, and this is seen as a major disadvantage of the Transrapid system compared to high-speed rail. Certain adaptations could theoretically allow dual mode operation with other maglev vehicles, but none have yet been proposed.

Technical Data

* Based on the Emsland test track and the Transrapid 07 vehicle:
** Motor: Longstator synchronous linear motor in guideway. The motor is installed in 58 segments.
** Length of segment: Variable between 300 and 2,080 meters.
** Maximum acceleration force: 90 kN.
** Energy consumption at 400 km/h: 6.0 Megawatts.
** Efficiency: 85%
** Vehicle acceleration rate: 0.85 m/s²
** Vehicle deceleration rate: 1.2 m/s²
* Transrapid 07 vehicle:
** Length: 51.7 m (Two cars)
** Width: 3.7 m
** Height: 4.7 m
** Number of levitation magnets: 15 per car.
** Levitation height: 10 mm
** Number of lateral positioning magnets: 12 per car.
** Lateral g

** Total vehicle weight: 110 metric tons.
* Transrapid 08 (Data for a three car vehicle.):
** Length: 79.7 m
** Width: 3.7 m
** Height: 4.2 m
** Maximum service speed: Between 400 and 550 km/h.
** Unladen weight: 149.5 metric tons.
** Maximum carrying capacity: 39 metric tons.
** Seating:
*** End/driving cars: Max. 92 per car.
*** Standard cars: Max. 126 per car.
**Trains can be between two and ten cars in length.

System components

Controlled levitation

Magnetic forces on the track are regulated through an electromagnetic feedback system such that the gap between the levitation magnets and stator packages remains at 10 mm +/- 1 mm. The magnets are mounted individually to follow the guideway. The gap is monitored with a sensor.

The feedback system allows the car to levitate from the track when stopped. Skids are used for parking the car; these also serve as friction brakes in emergencies, allowing the car to stop even if some of the magnets fail.

The floor of the Transrapid is approximately 15 cm from the track surface and it can pass over small obstructions such as snow or light icing. Track maintenance vehicles must be used in the case of heavier ice layers or compacted snow too thick to be pushed aside by the pressure wave created by the passing train.


In contrast to standard railways or roadways, Transrapid track sections are premanufactured in sections of between 12 and 60 metres in length, then assembled into a functioning track on-site. The sections can be made of concrete, steel, or a hybrid, although for the Shanghai track only the hybrid was used. The track is supported on pylons at heights of between 2.20 metres and 20 metres, although it is possible to build track at grade. The manufacturing process makes – within technical limits – nearly any conceivable track shape possible. Track sections are selected according to the track layout.

For the hybride construction a straight prestressed concrete profile in combination with installed 3 m steel sections is used. The arch gradient is adjusted by cantilevers of different length, which are mounted on the prestressed concrete profile, enabling the adjustment of every radius.

Then the actual track system is mounted on that structure. It consists of steel plates nerved by inductors and attached to the lower side. Those are the so-called stator moving field conductors. Furthermore the track system has steel leading guard rails at its sides, on which the leading magnets take effect. Stator package as well as guard rails enable tuning the track radius down to the minimum curve radius.

Powerful electromagnets are built in the vehicle that way, that they can reach below the track system and lift up the vehicle with the power of the magnetic field. Leading magnets on the side keep the vehicle in track.

The applied long stator principle leads to a lighter weight of the Transrapid, because no drive electronics had to be placed within the vehicle. But there are higher building costs.

In contrast to conventional tracks, which only support 6,5° (11,3%) of banking, Transrapid tracks support a banking of up to 12° (21,3%), or in special cases, 16° (28,7%). Because of this, Transrapid trains can achieve 20% more speed on a curve than normal trains (assuming 1 m/s² of acceptable centripetal acceleration.) Conventional trains can compensate somewhat with tilting technology though.

Minimum Curve Radius

There is a minimum curve radius for Transrapid tracks. Curves which have a smaller radius cannot be used by Transrapid trains. This is not only because of the shape of the trains themselves, but also because of the shape of the magnets. In a curved section of the track, the inner rail is shorter than the outer rail. Because a synchronous motor is used, the stator packages on both sides of the track must be approximately evenly spaced. In a curve, the outer rails have a larger distance between them than the inner rails. Thus, the minimum curve radius is limited to 270 m.

With a maximum transverse slope of 12°, an imbalanced side acceleration of 1.0 m/s², and a high speed on curves of 400 km/h, the effective minimum curve radius is 4000 m.

Drive (linear-motor)

The drive of the vehicle results from a moving magnet field within the track, which pulls the vehicle at its magnets. Therefore the track system works similar to a stator of a synchronous three phase motor (hence "long stator principle"), whose rotor are the vehicle's magnets. Acceleration and deceleration is enabled by increasing or decreasing the frequency of the magnetic field, which in turn is responsible for the velocity of the moving field. In order to enable the system's function, the moving field has to be exactly adjusted in relation to the train. Therefore the position of the train has to be exactly determined at any time. Zur Versorgung der Wanderfeldleitung sind an der Strecke in Abständen von 0,3 bis 5 km (so genannte "Unterwerks-" oder "Speiseabschnitte") Einspeisungen aus dem Streckenkabel notwendig. Die Streckenkabel werden wiederum von Umrichterstationen versorgt, welche die erforderlichen Spannungen, Ströme und Frequenzen im jeweiligen Abschnitt bereitstellen.

In jedem Speiseabschnitt darf sich nur ein Fahrzeug befinden. Für eine genaue Regelung ist es unabdingbar die genaue Position des Fahrzeuges zu kennen. Dies wird durch redundante Wegmessysteme gewährleistet. Die Fahrtkontrolle selbst wird von einer Steuerzentrale übernommen, ähnlich der Linienzugbeeinflussung im deutschen Eisenbahnnetz bei aktiver automatischer Fahr-Bremssteuerung. Ein führerloser Betrieb ist daher möglich.

Mitwandernde Strecken-Stromversorgung (Statorschaltverfahren)

Jede Umrichterstation ist mit einer oder mehreren Umrichtergruppen ausgestattet. Über Streckenkabel und Abschnittsschalter können solche Gruppen selektiv auf einzelne Unterabschnitte (sog. "Motorabschnitte") der Strecke geschaltet werden. Es gibt mehrere Schaltverfahren:; Kurzschlussverfahren: Eine Umrichtergruppe versorgt jeweils den Abschnitt, in dem das Fahrzeug fährt. Nicht bestromte Abschnitte werden über Leistungsschalter kurzgeschlossen. An jedem Motorsegment kommt es zu einer Unterbrechung der Motorleistung, was zu einem wahrnehmbaren Schaltruck führt.; Bocksprungverfahren: Zwei Umrichtergruppen versorgen zwei hintereinander liegende Abschnitte; verlässt das Fahrzeug den hinteren der Abschnitte, übernimmt die versorgende Gruppe den Abschnitt vor der gegenwärtigen Fahrzeugposition. Die benötigte Verlustleistung im Statorpaket ist doppelt so groß wie beim Kurzschlussverfahren. Es kommt jedoch zu keiner Unterbrechung des Vortriebs.; Wechselschrittverfahren: Die linke und die rechte Seite der Motorwicklung in der Fahrbahn sind in gegeneinander versetzte Abschnitte aufgeteilt. Bestromt werden immer jeweils zwei sich überlappende Abschnitte. Die Statorverlustleistung ist genauso groß wie beim Kurzschlussverfahren.; Dreischrittverfahren: Ähnlich dem Wechselschrittverfahren werden immer ein Abschnitt und die zwei mit ihm überlappenden auf der anderen (Fahrweg-)Motorseite bestromt. Wie beim Bocksprungverfahren gibt es hier keine Unterbrechung des Antriebs, jedoch ist die Statorverlustleistung anderthalb Mal so groß wie beim Kurzschlussverfahren.


Für die Energieversorgung im Fahrzeug wird hauptsächlich ein Lineargenerator verwendet. Ähnlich wie der Elektromotor des Fahrantriebs ist auch der Lineargenerator eine „aufgeschnittene“ und in die Länge gestreckte Version eines normalen rotierenden Generators. Dafür befinden sich gesonderte elektromagnetische Wicklungen im Fahrzeug.

Der Lineargenerator nutzt die fortlaufenden Änderungen der magnetischen Feldstärke, die durch die Fortbewegung des Fahrzeugs beim Überfahren der einzelnen Statorwicklungen verursacht werden. Dies funktioniert ab einer unteren Geschwindigkeit von 100 km/h ausreichend effizient, um die Trag- und Führungsmagneten und die weiteren elektrischen Geräte im Fahrzeug zu versorgen. Der Generator muss dabei eine Leistung von maximal 270 kW erzeugen können.Für kurze Unterbrechungen erfolgt die Versorgung aus fortwährend geladenen Bordbatterien. An Stellen, an denen betriebsmäßig langsamer als 100 km/h gefahren werden muss, etwa an Bahnhöfen, werden die Fahrzeugsysteme bisher noch herkömmlich über Stromschienen gespeist.

Ob eine durchgehende Stromschiene und/oder ein Lineargenerator zur Stromversorgung vorgesehen werden, war vom Konzept und Betriebsprogramm der Strecke abhängig. Inzwischen ist ein System entwickelt worden, das es erlaubt die benötigte Energie durch entsprechende Hochfrequenzeinspeisung in den Fahrweg und über einen transformatorischen Effekt in das Fahrzeug einzuspeisen. Stromschienen können dadurch entfallen.


(See also the general history of Maglev)

The prehistory of the Transrapid began in 1969/70 with a preliminary study and the appointment of an exploratory investigation. Next, wurden Kurzstatorvarianten untersucht. Nachteil waren hier die an der Strecke in voller Länge montierten Stromschienen. MBB stellte 1971 einen Demonstrator für die Personenfertigung vor. 1972 bauten AEG-Telefunken, BBC und Siemens einen Prototyp EET 01 mit supraleitenden Spulen, der auf einer 900 m langen Kreisbahn in Erlangen betrieben wurde. Hierbei kam das Prinzip des "elektrodynamischen Schwebens" zum Einsatz.

Thyssen Henschel (heute ThyssenKrupp AG) und die TU Braunschweig entwickelten ab 1974 die Langstatortechnik. Das Versuchsfahrzeug KOMET der MBB (heute EADS) erreichte im Jahre 1976 auf der 1,3 km langen Versuchstrecke in Manching 401 km/h. Es ist heute im Deutschen Museum ausgestellt. Zwei Jahre später startete der Versuchsbetrieb der weltweit ersten passagierbefördernden Langstator-Magnetschwebebahn. 1977 entschied das Bundesministerium für Forschung und Technologie, die Förderung elektrodynamischer Schwebesysteme und Kurzstator-Antriebssysteme einzustellen (geschieht 1979 bzw. 1983). Dies wird als der so genannte "Systementscheid" für die Technik des heutigen Transrapid betrachtet. Neben dem Antrieb hat die TU Braunschweig auch zum Fahrweg entscheidende Beiträge geliefert. []

Vom Systementscheid zur Einsatzreife

1978 wurde das Konsortium „Magnetbahn Transrapid“ gegründet und der Bau der Transrapid Versuchsanlage Emsland (TVE) beschlossen. Ein Jahr später präsentierte die Internationale Verkehrsausstellung (IVA) in Hamburg die weltweit erste für Personenverkehr zugelassene Magnetbahn (Transrapid 05). Dessen maximale Fahrgeschwindigkeit betrug 75 km/h. Im Jahr 1980 begann der Bau der Transrapid-Versuchsanlage im Emsland (TVE), vier Jahre später erfolgte die Imbetriebnahme des ersten Bauabschnittes. Der für 400 km/h entwickelte Transrapid 06 erreichte dort 1987 eine Geschwindigkeit von 392 km/h, 1988 von 412,6 km/h. Der ab 1987 entwickelte Transrapid 07 ist für 500 km/h ausgelegt, er ging 1989 in den Versuchsbetrieb auf der TVE und erreichte 1993 eine Geschwindigkeit von 450 km/h.

Verbleib der Versuchsfahrzeuge:
* Transrapid 01: Deutsches Museum München
* Transrapid 02: Krauss Maffei, München
* Transrapid 03: verschrottet
* Transrapid 04: Technikmuseum Speyer
* Transrapid 05: Aufgeständert auf dem Gelände von Thyssen Krupp in Kassel (Haltestelle Holländische Straße)
* Transrapid 06: Aufgeständert vor dem Deutschen Museum Bonn, Trachten (NL)
* Transrapid 07: München Airport, Infozentrum Lathen

Von der Einsatzreife zu Großprojekten

Nach ersten Planungen 1989 für eine Strecke zwischen den Flughäfen Düsseldorf und Köln/Bonn und der Feststellung der Einsatzreife des Transrapid 1991 wurde 1992 eine Transrapid-Strecke Hamburg-Berlin in den Bundesverkehrswegeplan aufgenommen. Trotz diverser Finanzierungsbedenken wurde der Bau 1994 beschlossen. 1998 erfolgte die Gründung von Transrapid International; 1999 wurde das Vorserienmodell Transrapid 08 des für den Einsatz auf der Transrapid-Strecke Hamburg-Berlin vorgesehenen Fahrzeugs an die Versuchsstrecke im Emsland ausgeliefert.

Anfang 2000 wurde das Projekt Hamburg-Berlin aufgegeben und das Planfeststellungsverfahren eingestellt; stattdessen wurden fünf alternative Relationen für den Einsatz mit dem Transrapid in Deutschland untersucht, mit dem Schwerpunkt eines Regionalverkehreinsatzes. Anfang des Jahres 2001 wurde der Vertrag zum Bau der Transrapid-Strecke in Shanghai unterzeichnet, die Strecke ist mittlerweile in Betrieb.

Auf das „kleinere“ Modell, den so genannten Metrorapid im Ruhrgebiet und Rheinland (von Dortmund nach Düsseldorf) wurde Ende Juni 2003 aus finanziellen und technischen Gründen verzichtet.

Dagegen erscheint die Realisierung einer Flughafenanbindung per Magnetschwebebahn bis 2011 als möglich. Das Planfeststellungsverfahren hierzu begann mit dem Antrag auf Planfeststellung beim Eisenbahn-Bundesamt durch die Deutsche Bahn am 28. Februar 2005. Details unter dem Artikel Transrapid München.

Weitere Strecken sind immer wieder Gegenstand einer öffentlichen Diskussion, dazu gehören die Verbindungen:
* zwischen Amsterdam und Hamburg („Eurorapid“)
* zwischen Berlin, Leipzig, Hamburg und Dresden
* zwischen Berlin, Prag, Wien und Budapest ("TEN/PAN Korridor IV")
* zwischen Frankfurt und Hahn
* Nah- und Fernverkehrsstrecken in der Volksrepublik China, den USA und in den Niederlanden
* eine bis zu 800 km lange Strecke durch die Vereinigten Arabischen Emirate und Bahrein
* eine 800 km lange Strecke von London nach Glasgow

Zum Teil gibt es dafür auch bereits konkrete Planungen. Die Chancen der Strecke Frankfurt—Hahn werden als niedrig eingeschätzt, weil eine in der Qualität annähernd gleiche Anbindung durch Reaktivierung der Eisenbahnstrecke nach Hahn zu einem Bruchteil der Kosten möglich wäre.

Im August 2005 verkündete der damalige Bundesverkehrsminister Manfred Stolpe, dass die Bundesregierung 113 Millionen Euro in die Weiterentwicklung der Transrapid-Technologie investieren will. In ihrem Regierungsprogramm 2005–2009 beabsichtigen CDU/CSU, eine Transrapidstrecke in Deutschland zu realisieren.


Transrapid in Germany

It has been debated for decades whether it would be economically prudent to introduce Transrapid technology in Germany.

The development of Transrapid was accomplished almost exclusively through public funding. Until the year 2000, approximately 1.2 billion euros of tax money flowed into the project annually. There is currently a test track in Lathen in the Emsland, which is run by IABG for Deutsche Bahn AG. Those who are interested in the project can make an appointment in the Visitors Center to ride the Transrapid.

In May 2005, automatic Transrapid trips (i.e. without a train operator) were approved by authorities. This authorisation was considered an important milestone toward fully operational status of the technology. The Transrapid is thus the first high speed train in all of Europe to be approved for automatic operation.

Transrapid in China

On December 31, 2002, a test run of a 30 km stretch between Shanghai and Pudong Airport was begun. On November 12, 2003, the Transrapid in Shanghai reached a new record of 501 km/h as the fastest commercial magnetic train. At the beginning of 2004, the operation became the fastest commercial rail line in the world.

Since 2003, China has been developing its own maglev train, which uses the same basic technology as the Transrapid. The first test runs are planned for the middle of 2006.

Discussions of the Transrapid System

Comparisons with Other Transportation Systems

To compare Transrapid with other rail transportation systems needs some caution.

Technically speaking the Transrapid allows higher speeds and gradients with lower wear and tear. The reason behind is a Transrapid has its motor in the track and not in the vehicle, compared to an ICE or a Tram-Train System.

Considering Maximum Speed Transrapids 500 km/h are to be found between High Speed Trains (220–320 km/h) and Air Traffic (720-990 km/h). Costwise (to be taken with consideration, since engine is part of track cost) a Transrapid is similar to an ICE or an over ground U-Bahn and needs an own track without same level crossings. Tunnels are more expensive due to broader profiles.

The most significant technical restriction is the low passenger capacity which is beyond a simple tramway. The engine being a part of the track fixes the system capacity, similar to other Schwebebahnconcepts.

From a competition standpoint, the Transrapid is a proprietary solution. Different as in classical Railways or in telco networks (GSM, TETRA, both administrated by the German Bundesnetzagentur) a Transrapid system does not allow any direct competition.

The track being a part of the engine, only the single manufacture Transrapid brand can be operated. Insofar a network of Transrapids involves higher risks and costs - not only crossings and switches are much more clumsy and expensive compared to standard rail, competition of different operators on the same network is not possible. In case of any technical or economic problem the high infrastructure costs doesnot allow a change of deliverer. This competitive disadvantage had as well an impact on the addressed market segment. Instead of building up segments of a future Transrapid network, the most realistic or already installed Transrapid lines (Schanghai, Transrapid München)are very close to other tailor made single line solutions for big city high visitor venues as (City, Trade fairs, Traffic hubs and touristic highlights) and much less a starting of a future network.

* Alweg-Bahn and further Einschienenbahnen
* Aerobus
* H-Bahn
* Peoplemover
* Coaster (Personentransportsystem) und Gondelbahn
* Schwebebahnen in Dresden und Wuppertal.

Its not the first time such systems start being designed in German speaking countries and are set on track overseas.

For advantages and disadvantages of maglev trains, see also: maglev.


* Horst Götzke: "Transrapid. Technik und Einsatz von Magnetschwebebahnen." Transpress, Berlin 2002, ISBN 3-613-71155-9
* Stefan H. Hedrich: "Transrapid. Die Magnetschwebebahn in der politischen „Warteschleife“." EK, Freiburg 2003, ISBN 3-88255-148-8
* Bernd Englmeier: "ICE und Transrapid. Vergleichende Darstellung der beiden Hochgeschwindigkeitsbahnen. Historie, Technik, Zukunftschancen." BoD GmbH, Norderstedt 2004, ISBN 3-8334-0629-1
* Rudolf Breimeier: "Transrapid oder Eisenbahn - ein technisch-wirtschaftlicher Vergleich". Minirex-Verlag Luzern 2002, ISBN 3-907014-14-6
* Hübner, H. (Hrsg.): "Transrapid zwischen Ökonomie und Ökologie. Eine Technik-Wirkungsanalyse alternativer Hochgeschwindigkeitssysteme." Dt. Univ.-Verl. Wiesbaden 1997, ISBN 3-8244-6573-6
* C.-R. Foos (Hrsg.): "Taschenbuch der Magnetschwebebahn-Gesetze: Sammlung des geltenden Rechts." Minfeld in der Pfalz 2002
* Glasers Annalen /ZEV Rail: "Innovative Verkehrstechnik für das 21. Jahrhundert: Transrapid." Berlin 2003. ISSN 1618-8330
* Rainer Schach, Peter Jehle, René Naumann: "Transrapid und Rad-Schiene-Hochgeschwindigkeitsbahn". Springer, Berlin 2006, ISBN 3-540-28334-X

Siehe auch

* , Transrapid Shanghai

External links

* [ Transrapid International - offizielle Herstellerseite]
* [ DB AG - offizielle Magnetschnellbahnseite]
* [ IABG – Transrapid Versuchsanlage Emsland (TVE)]
* [ Magnetschnellbahnen in Deutschland und Asien]
* [ Video einer Fahrt mit dem Transrapid Shanghai]


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Transrapid — is a German high speed monorail train using magnetic levitation. Based on a patent from 1934, planning of the Transrapid system started in 1969. The test facility for the system in Emsland, Germany was completed in 1987. In 1991 the technical… …   Wikipedia

  • Transport in Glasgow — The city of Glasgow, Scotland has a transport system encompassing air, rail, road, and an underground rail circuit. Prior to 1962, the city was also served by trams.AirportsGlasgow is served by two international airports and a seaplane terminal:… …   Wikipedia

  • Maglev — JR Maglev at Yamanashi, Japan test track in November 2005 …   Wikipedia

  • Maglev (transport) — MAGLEV, or magnetic levitation, is a system of transportation that suspends, guides and (usually) propels vehicles, predominantly trains, using magnetic forces. This method has the potential to be faster, quieter and smoother than wheeled mass… …   Wikipedia

  • List of maglev train proposals — This is a list of proposed Maglev trains worldwide. Contents 1 Europe 1.1 Denmark 1.2 Germany 1.3 Switzerland 1.4 Un …   Wikipedia

  • Munich — For other uses of Munich or München , see Munich (disambiguation). München Munich …   Wikipedia

  • Monorail — For other meanings, see Monorail (disambiguation). Moscow Monorail in Russia A monorail is a rail based transportation system based on a single rail, which acts as its sole support and its guideway. The term is also used variously to describe the …   Wikipedia

  • Shanghai-Hangzhou Maglev Train — is a proposed maglev train line from Shanghai to Hangzhou, to be built by Germany s Transrapid consortium (mainly ThyssenKrupp and Siemens). The project start date is in 2010, and the target for completion is 2014.IntroductionThe high speed line… …   Wikipedia

  • California-Nevada Interstate Maglev — Infobox Public transit name = California Nevada Interstate Maglev imagesize = locale = California, Nevada transit type = Maglev ridership = system length = operator = TBD website = The California Nevada Interstate Maglev project is proposing the… …   Wikipedia

  • Bürgerrechtsbewegung Solidarität — Helga Zepp LaRouche Bürgerrechtsbewegung Solidarität (BüSo), or the Civil Rights Movement Solidarity, is a German political party founded by Helga Zepp LaRouche, wife of U.S. political activist Lyndon LaRouche. The BüSo is part of the worldwide… …   Wikipedia

  • Munich Airport — Flughafen München IATA: M …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.