# N-sphere

﻿
N-sphere

can project a sphere's surface to a plane, it can also project a 3-sphere's surface into 3-space. This image shows three coordinate directions projected to 3-space:parallels (red), meridians (blue) and hypermeridians (green).Due to the conformal property of the stereographic projection,the curves intersect each other orthogonally (in the yellow points) as in 4D.All of the curves are circles: the curves that intersect <0,0,0,1> have an infinite radius (= straight line).]

In mathematics, an "n"-sphere is a generalization of an ordinary sphere to arbitrary dimension. For any natural number "n", an "n"-sphere of radius "r" is defined the set of points in ("n" + 1)-dimensional Euclidean space which are at distance "r" from a central point, where the radius "r" may be any positive real number. It is an "n"-dimensional manifold in Euclidean ("n" + 1)-space. In particular, a 0-sphere is a pair of points on a line, a 1-sphere is a circle in the plane, and a 2-sphere is an ordinary sphere in three dimensional space. Spheres of dimension "n" > 2 are sometimes called hyperspheres. The "n"-sphere of unit radius centered at the origin is called the unit "n"-sphere, denoted "S""n". The unit "n"-sphere is often referred to as "the" "n"-sphere. In symbols:

:$S^n = left\left\{ x in mathbb\left\{R\right\}^\left\{n+1\right\} : |x| = 1 ight\right\}.$

An "n"-sphere is the surface or boundary of an ("n" + 1)-dimensional ball, and is an "n"-dimensional manifold. For "n" ≥ 2, the "n"-spheres are the simply connected "n"-dimensional manifold of constant, positive curvature. The "n"-spheres admit several other topological descriptions: for example, they can be constructed by gluing two "n"-dimensional Euclidean spaces together, by identifying the boundary of an "n"-cube with a point, or (inductively) by forming the suspension of an ("n" − 1)-sphere.

Description

For any natural number "n", an "n"-sphere of radius "r" is defined as the set of points in ("n" + 1)-dimensional Euclidean space which are at distance "r" from a fixed point, where "r" may be any positive real number. In particular:
* a 0-sphere is a pair of points {"p" − "r", "p" + "r"} containing a line segment.
* a 1-sphere is a circle of radius "r". These contain disks.
* a 2-sphere is an ordinary sphere in 3-dimensional Euclidean space that contains a ball.
* a 3-sphere is a sphere in 4-dimensional Euclidean space.

Euclidean coordinates in ("n" + 1)-space

The set of points in ("n" + 1)-space: ("x"1,"x"1,"x"2,…,"x""n"+1) that define an "n"-sphere, (S"n") is represented by the equation:

:$r^2=sum_\left\{i=1\right\}^\left\{n+1\right\} \left(x_i - C_i\right)^2.,$

where "C" is a center point, and "r" is the radius.

The above "n"-sphere exists in ("n" + 1)-dimensional Euclidean space and is an example of an "n"-manifold. The volume form &omega; of "n"-sphere of radius $r$ is given by

:$omega = \left\{1 over r\right\} sum_\left\{j=1\right\}^\left\{n+1\right\} \left(-1\right)^\left\{j-1\right\} x_j ,dx_1 wedge cdots wedge dx_\left\{j-1\right\} wedge dx_\left\{j+1\right\}wedge cdots wedge dx_\left\{n+1\right\} = * dr$

where * is the Hodge star operator; see harvtxt|Flanders|1989|loc=§6.1 for a discussion and proof of this formula in the case "r" = 1. As a result, $scriptstyle\left\{dr wedge omega = dx_1 wedge cdots wedge dx_\left\{n+1.$

"n"-ball

The space enclosed by an "n"-sphere is called an ("n" + 1)-ball. An ("n" + 1)-ball is closed if it included the equality, and open otherwise.

Specifically:
* A "1-ball", a line segment, is the interior of a (0-sphere).
* A "2-ball", a disk, is the interior of a circle (1-sphere).
* A "3-ball", an ordinary ball, is the interior of a sphere (2-sphere).
* A "4-ball", is the interior of a 3-sphere, etc.

Volume of the "n"-ball

The hyperdimensional volume of the space which a $\left(n-1\right)$-sphere encloses (the $n$-ball) is given by

:$V_n=\left\{pi^frac\left\{n\right\}\left\{2\right\}R^noverGamma\left(frac\left\{n\right\}\left\{2\right\} + 1\right)\right\}=\left\{C_n R^n\right\}$,

where $Gamma$ is the gamma function. (For even $n$, $Gammaleft\left(frac\left\{n\right\}\left\{2\right\}+1 ight\right)= left\left(frac\left\{n\right\}\left\{2\right\} ight\right)!$; for odd $n$, $Gammaleft\left(frac\left\{n\right\}\left\{2\right\}+1 ight\right)= sqrt\left\{pi\right\} frac\left\{n!!\right\}\left\{2^\left\{\left(n+1\right)/2$, where $n!!$ denotes the double factorial.)

From this, it follows that the value of the constant $C_n$ for a given $n$ is::$C_n=\left\{frac\left\{pi^k\right\}\left\{k!$, for even "n"=2"k", and

:$C_n=C_\left\{2k+1\right\}=frac\left\{2^\left\{2k+1\right\} k!, pi^\left\{k\left\{\left(2k+1\right)!\right\}$ for odd "n"=2"k"+1.

The "surface area" of this (n-1)-sphere is

:$S_\left\{n-1\right\}=frac\left\{dV_n\right\}\left\{dR\right\}=frac\left\{nV_n\right\}\left\{R\right\}=\left\{2pi^frac\left\{n\right\}\left\{2\right\}R^\left\{n-1\right\}overGamma\left(frac\left\{n\right\}\left\{2\right\}\right)\right\}=\left\{n C_n R^\left\{n-1$

The following relationships hold between the "n"-spherical surface area and volume:

:$V_n/S_\left\{n-1\right\} = R/n,$

:$S_\left\{n+1\right\}/V_n = 2pi R,$

This leads to the recurrence relation:

:$V_n = frac\left\{2 pi R^2\right\}\left\{n\right\} V_\left\{n-2\right\},$

Conventionally, these formulas can also be proven directly by integration in "n"-dimensional spherical coordinates harv|Stewart|2006|p=881.

Examples

For small values of $n$, the volumes, $V_n$ , of the $n$-ball of radius $R$ are:

:

If the dimension "n" is not limited to integral values, the n-sphere volume is a continuous function of "n" with a global maximum for the unit sphere in "dimension" "n" = 5.2569464... where the "volume" is 5.277768... It has a hypervolume of 1 when "n" = 0 or when "n" = 12.76405...

The hypercube circumscribed around the unit "n"-sphere has an edge length of 2 and hence a volume of 2"n"; the ratio of the volume of the "n"-sphere to its circumscribed hypercube decreases monotonically as the dimension increases.

The non-monotonic behaviour of the numerical value of "n"-spheres as a function of "n" may seem strange at first glance. However, by assigning units of length to each dimension one can see it is meaningless to compare the unit-sphere volumes in different "n"'s, just as it is meaningless to compare a length to an area in other contexts. A meaningful comparison is obtained by using a dimensionless measure of the volume, such as the ratio of the n-sphere and its circumscribed hypercube volumes. Using this measure restores the intuitively normal behavior of a monotonic decline in the volume as the dimension increases.

Hyperspherical coordinates

We may define a coordinate system in an n-dimensional Euclidean space which is analogousto the spherical coordinate system defined for 3-dimensional Euclidean space, in whichthe coordinates consist of a radial coordinate $r$, and $n-1$ angular coordinates $phi _1 , phi _2 , ... , phi _\left\{n-1\right\}$. If $x_i$ are theCartesian coordinates, then we may define

:$x_1=rcos\left(phi_1\right),$:$x_2=rsin\left(phi_1\right)cos\left(phi_2\right),$:$x_3=rsin\left(phi_1\right)sin\left(phi_2\right)cos\left(phi_3\right),$:$cdots,$:$x_\left\{n-1\right\}=rsin\left(phi_1\right)cdotssin\left(phi_\left\{n-2\right\}\right)cos\left(phi_\left\{n-1\right\}\right),$:$x_n~~,=rsin\left(phi_1\right)cdotssin\left(phi_\left\{n-2\right\}\right)sin\left(phi_\left\{n-1\right\}\right),$

While the inverse transformations can be derived from those above::$an\left(phi_\left\{n-1\right\}\right)=frac\left\{x_n\right\}\left\{x_\left\{n-1$:$an\left(phi_\left\{n-2\right\}\right)=frac\left\{sqrt$x_n}^2+{x_{n-1^2{x_{n-2:$cdots,$:$an\left(phi_\left\{1\right\}\right)=frac\left\{sqrt$x_n}^2+{x_{n-1^2+cdots+{x_2}^2{x_{1Note that last angle $phi _\left\{n-1\right\}$ has a range of $2pi$ while the other angles have a range of $pi$. This range covers the whole sphere.

The volume element in "n"-dimensional Euclidean space will be found from the Jacobian of the transformation:

:$d_\left\{mathbb\left\{R\right\}^n\right\}V = left|detfrac\left\{partial \left(x_i\right)\right\}\left\{partial\left(r,phi_j\right)\right\} ight$
dr,dphi_1 , dphi_2ldots dphi_{n-1}

:$=r^\left\{n-1\right\}sin^\left\{n-2\right\}\left(phi_1\right)sin^\left\{n-3\right\}\left(phi_2\right)cdots sin\left(phi_\left\{n-2\right\}\right),dr,dphi_1 , dphi_2cdots dphi_\left\{n-1\right\}$

and the above equation for the volume of the n-ball can be recovered by integrating:

:$V_n=int_\left\{r=0\right\}^R int_\left\{phi_1=0\right\}^picdots int_\left\{phi_\left\{n-2\right\}=0\right\}^piint_\left\{phi_\left\{n-1\right\}=0\right\}^\left\{2pi\right\}d_\left\{mathbb\left\{R\right\}^n\right\}V. ,$

The volume element of the ("n"-1)&ndash;sphere, which generalizes the area element of the 2-sphere, is given by

:$d_\left\{S^\left\{n-1V = sin^\left\{n-2\right\}\left(phi_1\right)sin^\left\{n-3\right\}\left(phi_2\right)cdots sin\left(phi_\left\{n-2\right\}\right), dphi_1 , dphi_2ldots dphi_\left\{n-1\right\}$

Stereographic projection

Just as a two dimensional sphere embedded in three dimensions can be mapped onto a two-dimensional plane by a stereographic projection, an n-sphere can be mapped onto an n-dimensional hyperplane by the n-dimensional version of the stereographic projection. For example, the point $\left[x,y,z\right]$ on a two-dimensional sphere of radius 1 maps to the point $\left[x,y,z\right] mapsto left \left[frac\left\{x\right\}\left\{1-z\right\},frac\left\{y\right\}\left\{1-z\right\} ight\right]$ on the $xy$ plane. In other words:

:$\left[x,y,z\right] mapsto left \left[frac\left\{x\right\}\left\{1-z\right\},frac\left\{y\right\}\left\{1-z\right\} ight\right] .$

Likewise, the stereographic projection of an n-sphere $mathbf\left\{S\right\}^\left\{n-1\right\}$ of radius 1 will map to the n-1 dimensional hyperplane $mathbf\left\{R\right\}^\left\{n-1\right\}$ perpendicular to the $x_n$ axis as:

:$\left[x_1,x_2,ldots,x_n\right] mapsto left \left[frac\left\{x_1\right\}\left\{1-x_n\right\},frac\left\{x_2\right\}\left\{1-x_n\right\},ldots,frac\left\{x_\left\{n-1\left\{1-x_n\right\} ight\right] .$

Generating points on the surface of the n-ball

To generate points on the surface of the n ball, Marsaglia (1972) gives the following algorithm.

Generate an n-dimensional vector of Normal deviates (it suffices to use N(0,1), although in fact the choice of the variance is arbitrary), $mathbf\left\{x\right\}=\left(x_1,x_2,ldots,x_n\right)$.

Now calculate the "radius" of this point, $r=sqrt\left\{x_1^2+x_2^2+ldots+x_n^2\right\}$.

The vector $frac1r mathbf\left\{x\right\}$ is uniformly distributed over the surface of the n-ball.

The normal distribution e-x^2 when expanded over another axis e-y^2 after multiplication takes the form e-(x^2+y^2) or e-(r^2) and so is only dependent on distance from the origin.

Another way to generate a random distribution on a hypersphere is to make a uniform oneover a hypercube that includes the unit hypersphere, exclude those points that are outside the hypersphere,then project the remaining interior points outward from the origin onto the surface. This will give a uniformdistribution, but it is necessary to remove the exterior points. As the relative volume of thehypersphere to the hypercube decreases very rapidly with dimension it will only work for fairlysmall numbers of dimensions.

pecific spheres

; 0-sphere : The pair of points {&plusmn;1} with the discrete topology. The only sphere which is disconnected. Has a natural Lie group structure; isomorphic to O(1). Parallelizable.; 1-sphere : Also known as the unit circle. Has a nontrivial fundamental group. Abelian Lie group structure U(1); the circle group. Topologically equivalent to the real projective line, RP1. Parallelizable. SO(2) = U(1).; 2-sphere : Complex structure; see Riemann sphere. Equivalent to the complex projective line, CP1. SO(3)/SO(2).; 3-sphere : Lie group structure Sp(1). Principal U(1)-bundle over the 2-sphere. Parallelizable. SO(4)/SO(3) = SU(2) = Sp(1) = Spin(3).; 4-sphere : Equivalent to the quaternionic projective line, HP1. SO(5)/SO(4).; 5-sphere : Principal U(1)-bundle over CP2. SO(6)/SO(5) = SU(3)/SU(2).; 6-sphere : Almost complex structure coming from the set of pure unit octonions. SO(7)/SO(6) = "G"2/SU(3).; 7-sphere : Topological quasigroup structure as the set of unit octonions. Principal Sp(1)-bundle over "S"4. Parallelizable. SO(8)/SO(7) = SU(4)/SU(3) = Sp(2)/Sp(1) = Spin(7)/"G"2 = Spin(6)/SU(3).

ee also

*Conformal geometry
*Homology sphere
*Homotopy groups of spheres
*Homotopy sphere
*Hyperbolic group
*Hypersphere
*Hypercube
*Inversive geometry
*Orthogonal group
*Möbius transformation

References

*.
* (Chapter 20: 3-spheres and hyperbolic 3-spaces.)
* (Chapter 14: The Hypersphere)
* Marsaglia, G. "Choosing a Point from the Surface of a Sphere." Ann. Math. Stat. 43, 645-646, 1972.
*.

* [http://www.bayarea.net/~kins/thomas_briggs/ Exploring Hyperspace with the Geometric Product]
*

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• sphère — [ sfɛr ] n. f. • 1509; espere mil. XIIe; d ab. t. d astron.; lat. sphæra, gr. sphaira 1 ♦ Surface fermée dont tous les points sont situés à égale distance d un point donné; solide délimité par cette surface (⇒ 1. balle, 1. bille, boule). Centre,… …   Encyclopédie Universelle

• Sphere — Sphère Pour les articles homonymes, voir Sphère (homonymie). Une sphère dans un espace euclidien En géométrie euclidienne, une sphère es …   Wikipédia en Français

• Sphere de Dyson — Sphère de Dyson Pour les articles homonymes, voir Sphère (homonymie) et Dyson (homonymie). Diagramme d’une coquille de Dyson d’une unit …   Wikipédia en Français

• Sphère de dyson — Pour les articles homonymes, voir Sphère (homonymie) et Dyson (homonymie). Diagramme d’une coquille de Dyson d’une unit …   Wikipédia en Français

• Sphère cornue d'Alexander — En mathématiques, et plus précisément en topologie, la sphère cornue d Alexander est un célèbre exemple de surface pathologique ; elle fut découverte en 1923 par J. W. Alexander. Sommaire …   Wikipédia en Français

• Sphere celeste — Sphère céleste Pour les articles homonymes, voir Céleste (homonymie). La sphère céleste est une sphère imaginaire de rayon quelconque et dont le centre est occupé par la Terre. Ce concept astronomique, hérité de l Antiquité et du géocentrisme,… …   Wikipédia en Français

• Sphere (program) — Sphere is a cross platform, open source computer program designed primarily to make role playing games (RPGs) similar to those found on the SNES and Sega Genesis consoles. Sphere was originally coded by Chad Austin. When making a game with Sphere …   Wikipedia

• sphere — SPHERE. s. f. Terme de Geometrie. Corps solide dont toutes les lignes tirées du centre à la circonference sont esgales. Sphere, se prend plus ordinairement pour Une espece de machine ronde & mobile, composée des divers cercles qui representent… …   Dictionnaire de l'Académie française

• Sphere de Hill — Sphère de Hill En astronomie, la sphère de Hill d un corps en orbite autour d un autre, plus massif, est une approximation de la zone d influence gravitationnelle de ce premier corps, c est à dire du volume d espace dans lequel un troisième corps …   Wikipédia en Français

• Sphère de Roche — Sphère de Hill En astronomie, la sphère de Hill d un corps en orbite autour d un autre, plus massif, est une approximation de la zone d influence gravitationnelle de ce premier corps, c est à dire du volume d espace dans lequel un troisième corps …   Wikipédia en Français

• Sphère de hill — En astronomie, la sphère de Hill d un corps en orbite autour d un autre, plus massif, est une approximation de la zone d influence gravitationnelle de ce premier corps, c est à dire du volume d espace dans lequel un troisième corps plus petit… …   Wikipédia en Français