Bounded mean oscillation

In harmonic analysis, a function of bounded mean oscillation, also known as a BMO function, is a realvalued function whose mean oscillation is bounded (finite). The space of functions of bounded mean oscillation (BMO), is a function space that, in some precise sense, plays the same role in the theory of Hardy spaces H^{p} that the space L^{∞} of essentially bounded functions plays in the theory of L^{p}spaces: it is also called John–Nirenberg space, after Fritz John and Louis Nirenberg who introduced and studied it for the first time.
Contents
Historical note
According to Nirenberg (1985, p. 703 and p. 707),^{[1]} the space of functions of bounded mean oscillation was introduced by John (1961, pp. 410–411) in connection with his studies of mappings from a bounded set Ω belonging to ℝ^{n} into ℝ^{n} and the corresponding problems arising from elasticity theory, precisely from the concept of elastic strain: the basic notation was introduced in a closely following paper by John & Nirenberg (1961),^{[2]} where several properties of this function spaces were proved. The next important step in the development of the theory was the proof by Charles Fefferman^{[3]} of the duality between BMO and the Hardy space H^{1}, in the noted paper Fefferman & Stein 1972: a constructive proof of this result, introducing new methods and starting a further development of the theory, was given by Akihito Uchiyama.^{[4]}
Definition
locally integrable function u (i.e. a function belonging to ) over a hypercube^{[5]} Q in ℝ^{n} is defined as the following integral:
The mean oscillation of awhere
 Q is the volume of Q, i.e. its Lebesgue measure
 u_{Q} is the average value of u on the cube Q, i.e.

 .
supremum over the set of all cubes Q contained in ℝ^{n}.
A BMO function is any function u belonging to whose mean oscillation has a finiteNote. The use of cubes Q in ℝ^{n} as the integration domains on which the mean oscillation is calculated, is not mandatory: Wiegerinck (2001) uses balls instead and, as remarked by Stein (1993, p. 140), in doing so a perfectly equivalent of definition of functions of bounded mean oscillation arises.
Basic properties
BMO functions are locally p–integrable
BMO functions are locally L^{p} if 0 < p < ∞ , but need not be locally bounded.
BMO is a Banach space
The supremum of the mean oscillation is called the BMO norm of u and is denoted by u_{BMO} (and in some instances it is also denoted u_{*}). The function u_{BMO} becomes a norm on BMO functions after quotienting out by the constant functions (which have BMO norm 0).
Averages of adjacent cubes are comparable
As the name suggests, the mean or average of a function in BMO shouldn't oscillate very much when computing it over cubes close to each other in position and scale. To be more precise, if Q and R are dyadic cubes such that their boundaries touch and the sidelength of Q is no less than onehalf the sidelength of R, then
where C>0 is some universal constant. This property is, in fact, equivalent to f being in BMO, that is, if f is a locally integrable function such that f_{R}f_{Q}≤C for all dyadic cubes Q and R adjacent in the sense described above, then f is in BMO and its BMO norm is proportional to the constant C.
The John–Nirenberg Inequality
The John–Nirenberg Inequality is an estimate that governs how far a function of bounded mean oscillation may deviate from its average by a certain amount.
Statement
There are constants c_{1},c_{2} > 0 such that whenever f ∈ BMO(ℝ^{n}), then for any cube Q in ℝ^{n},
Conversely, if this inequality holds over all cubes with some constant C in place of f_{BMO}, then f is in BMO with norm at most a constant times C.
A consequence: the distance in BMO to L^{∞}
The JohnNirenberg inequality can actually give more information than just the BMO norm of a function. For a locally integrable function f, let A(f) be the infimal A>0 for which
The John–Nirenberg inequality implies that A(f)≤Cf_{BMO} for some universal constant C. For an L^{∞} function, however, the above inequality will hold for all A>0. In other words, A(f)=0 if f is in L^{∞}. Hence the constant A(f) gives us a way of measuring how far a function in BMO is from the subspace L^{∞}. This statement can be made more precise:^{[6]} there is a constant C, depending only on the dimension n, such that for any function f ∈ BMO(ℝ^{n}) the following twosided inequality holds
Generalizations and extensions
The spaces BMOH and BMOA
When the dimension of the ambient space is 1, the space BMO can be seen as a subspace of harmonic functions on the unit disk and plays a major role in the theory of Hardy spaces: by using definition 2, it is possible to define the BMO(T) space on the unit circle as the space of functions such that
i.e. such that its mean oscillation over every arc I of the unit circle^{[7]} is bounded. Here as before f_{I} is the mean value of f over the arc I.
unit disk is said to belong to the Harmonic BMO or in the BMOH space if and only if it is the Poisson integral of a BMO(T) function. Therefore BMOH is the space of all functions u with the form:
An Analytic function on theequipped with the norm:
The subspace of analytic functions belonging BMOH is called the Analytic BMO space or the BMOA space.
BMOA as the dual space of H^{1}(D)
Charles Fefferman in his original paper proved that the real BMO space is dual to the real valued harmonic Hardy space on the upper halfspace ℝ^{n}× . Today in the theory of Complex and Harmonic analysis the following  modern  approach for analytic functions, is more often considered. Let H^{p}(D) be the Analytic Hardy space on the unit Disc. For p = 1 we identify (H^{1})^{*} with BMOA by pairing f ∈H^{1}(D) and g ∈ BMOA using the antilinear transformation T_{g}
Notice that although the limit always exists for an H^{1} function f and T_{g} is an element of the dual space (H^{1})^{*}, since the transformation is antilinear, we don't have an isometric isomorphism between (H^{1})^{*} and BMOA. However one can obtain an isometry if they consider a kind of space of conjugate BMOA functions.
The space VMO
The space VMO of functions of vanishing mean oscillation is the closure in BMO of the continuous functions that vanish at infinity. It can also be defined as the space of functions whose "mean oscillations" on cubes Q are not only bounded, but also tend to zero uniformly as the radius of the cube Q tends to 0 or infinity. The space VMO is a sort of Hardy space analogue of the space of continuous functions vanishing at infinity, and in particular the real valued harmonic Hardy space H^{1} is the dual of VMO.^{[8]}
The Dyadic BMO space
Let Δ denote the set of dyadic cubes in ℝ^{n}. The space dyadic BMO, written BMO_{d} is the space of functions satisfying the same inequality as for BMO functions, only that the supremum is over all dyadic cubes. This supremum is sometimes denoted •_{BMOd}.
This space is contained in but still distinct from BMO as it depends greatly on the position of the dyadic cubes. In particular, the function log(x)χ_{[0,∞)} is a function that is in dyadic BMO but not in BMO. However, if a function f is such that f(•x)_{BMOd}≤C for all x in ℝ^{n} for some C>0, then by the onethird trick f is also in BMO.
Although dyadic BMO is a much narrower class than BMO, many theorems that are true for BMO are much simpler to prove for dyadic BMO, and in some cases one can recover the original BMO theorems by proving them first in the special dyadic case.^{[9]}
Examples
Examples of BMO functions include the following:
 All bounded (measurable) functions. If f is in L^{∞}, then f_{BMO}≤2f_{∞}:^{[10]} however, the converse is not true as the following example shows.
 The function log(P) for any polynomial P that is not identically zero: in particular, this is true also for P(x)=x.^{[10]}
 If w is an A_{∞} weight, then log(w) is BMO. Conversely, if f is BMO, then e^{δf} is an A_{∞} weight for δ>0 small enough: this fact is a consequence of the JohnNirenberg Inequality.^{[11]}
Notes
 ^ Aside with the collected papers of Fritz John, a general reference for the theory of functions of bounded mean oscillation, with also many (short) historical notes, is the noted book by Stein (1993, chapter IV).
 ^ The paper (John 1961) just precedes the paper (John & Nirenberg 1961) in volume 14 of the Communications on Pure and Applied Mathematics.
 ^ Elias Stein credits only Fefferman for the discovery of this fact: see (Stein 1993, p. 139).
 ^ See his proof in the paper Uchiyama 1982.
 ^ When n = 3 or n = 2, Q is respectively a cube or a square, while when n = 1 the domain on integration is a bounded closed interval.
 ^ See the paper Garnett & Jones 1978 for the details.
 ^ An arc in the unit circle T can be defined as the image of a finite interval on the real line ℝ under a continuous function whose codomain is T itself: a simpler, somewhat naive definition can be found in the entry "Arc (geometry)".
 ^ See reference Stein 1993, p. 180.
 ^ See the reference paper by Garnett & Jones 1982 for a comprehensive development of these themes.
 ^ ^{a} ^{b} See reference Stein 1993, p. 140.
 ^ See reference Stein 1993, p. 197.
Bibliography
 Antman, Stuart (1983), "The influence of elasticity in analysis: modern developments", Bulletin of the American Mathematical Society 9 (3): 267–291, doi:10.1090/S027309791983151856, MR714990, Zbl 0533.73001. A historical paper about the fruitful interaction of elasticity theory and mathematical analysis.
 Nirenberg, Louis (1985), "Commentary on [various papers]", in Moser, Jürgen, Fritz John: Collected Papers Volume 2, Contemporary Mathematicians, Boston–Basel–Stuttgart: Birkhäuser Verlag, pp. 703–710, ISBN 0817632654, Zbl 0584.01025
References
 Fefferman, C. (1971), "Characterizations of bounded mean oscillation", Bulletin of the American Mathematical Society 77 (4): 587–588, doi:10.1090/S000299041971127635, MR0280994, Zbl 0229.46051.
 Fefferman, C.; Stein, E.M. (1972), "H^{p} spaces of several variables", Acta Mathematica 129: 137–193, doi:10.1007/BF02392215, MR0447953, Zbl 0257.46078.
 Folland, G.B. (2001), "Hardy spaces", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 9781556080104, http://eom.springer.de/H/h110090.htm.
 Garnett, John. B; Jones, Peter W. (September 1978), "The distance in BMO to L^{∞}", Annals of Mathematics, Second Series 108 (2): 373–393, doi:10.2307/1971171, JSTOR 1971171, MR0506992, Zbl 0358.26010.
 Garnett, John. B; Jones, Peter W. (1982), "BMO from Dyadic BMO", Pacific Journal of Mathematics 99 (2): 351–371, MR0658065, Zbl 0516.46021, http://projecteuclid.org/euclid.pjm/1102734020.
 Girela, Daniel (2001), "Analytic functions of bounded mean oscillation", in Aulaskari, Rauno, Complex function spaces, Proceedings of the summer school, Mekrijärvi, Finland, August 30September 3, 1999, Univ. Joensuu Dept. Math. Rep. Ser., 4, Joensuu: Joensuu University, Department of Mathematics, pp. 61–170, MR1820090, Zbl 0981.30026.
 John, F. (1961), "Rotation and strain", Communications on Pure and Applied Mathematics 14 (3): 391–413, doi:10.1002/cpa.3160140316, MR0138225, Zbl 0102.17404.
 John, F.; Nirenberg, L. (1961), "On functions of bounded mean oscillation", Communications on Pure and Applied Mathematics 14 (3): 415–426, doi:10.1002/cpa.3160140317, MR131498, Zbl 0102.04302.
 Stein, Elias M. (1993), Harmonic Analysis: RealVariable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton, NJ,: Princeton University Press, pp. xiv+695, ISBN 0691032165, MR1232192, OCLC 27108521, Zbl 0821.42001, http://books.google.com/?id=ljcOSMK7t0EC&printsec=frontcover#v=onepage&q=.
 Uchiyama, Akihito (1982), "A constructive proof of the FeffermanStein decomposition of BMO(ℝ^{n})", Acta Mathematica 148: 215–241, doi:10.1007/BF02392729, MR0666111, Zbl 0514.46018.
 Wiegerinck, J. (2001), "BMO space", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 9781556080104, http://eom.springer.de/b/b110660.htm.
Categories: Function spaces
 Functional analysis
 Harmonic analysis
Wikimedia Foundation. 2010.
Look at other dictionaries:
Oscillation (mathematics) — For other uses, see Oscillation (differential equation). Oscillation of a sequence (shown in blue) is the difference between the limit superior and limit inferior of the sequence. In mathematics, oscillation is the behaviour of a sequence of real … Wikipedia
BMO — Bounded Mean Oscillation (Medical) * Before Market Opens (Business » Stock Exchange) * Black Moving Object (Academic & Science » Astronomy) * Battalion Maintenance Officer (Governmental » Military) * Bhamo, Myanmar (Regional » Airport Codes) *… … Abbreviations dictionary
Hardy space — In complex analysis, the Hardy spaces (or Hardy classes) Hp are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz (Riesz 1923), who named them after G. H. Hardy, because of the… … Wikipedia
Louis Nirenberg — in Jerusalem, 1975 Louis Nirenberg (* 28. Februar 1925 in Hamilton, Ontario) ist ein kanadischer Mathematiker, der vor allem auf dem Gebiet der Partiellen Differentialgleichungen forscht … Deutsch Wikipedia
BMORaum — Der BMO Raum ist ein Objekt aus der harmonischen Analysis, einem Teilgebiet der Mathematik. Die Abkürzung BMO steht für „bounded mean oscillation“. Der Funktionenraum BMO wurde 1961 von Fritz John und Louis Nirenberg eingeführt. Dieser Raum ist… … Deutsch Wikipedia
List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… … Wikipedia
Muckenhoupt weights — In mathematics, the class of Muckenhoupt weights Ap consists of those weights ω for which the Hardy–Littlewood maximal operator is bounded on Lp(dω). Specifically, we consider functions f on and their associated maximal functions M(f) defined as… … Wikipedia
Sobolev inequality — In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces. These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the… … Wikipedia
List of Banach spaces — In the mathematical field of functional analysis, Banach spaces are among the most important objects of study. In other areas of mathematical analysis, most spaces which arise in practice turn out to be Banach spaces as well. Classical Banach… … Wikipedia
BMO — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sigles d’une seule lettre Sigles de deux lettres > Sigles de trois lettres Sigles de quatre lettres … Wikipédia en Français