De Rham curve

De Rham curve

In mathematics, a de Rham curve is a certain type of fractal curve named in honor of Georges de Rham.

The Cantor function, Césaro curve, Minkowski's question mark function, the Lévy C curve, the blancmange curve and the Koch curve are all special cases of the general de Rham curve.



Consider some metric space (M,d) (generally \mathbb{R}2 with the usual euclidean distance), and a pair of contracting maps on M:

d_0:\ M \to M
d_1:\ M \to M

By the Banach fixed point theorem, these have fixed points p0 and p1 respectively. Let x be a real number in the interval [0,1], having binary expansion

x = \sum_{k=1}^\infty \frac{b_k}{2^k}

where each bk is 0 or 1. Consider the map

c_x:\ M \to M

defined by

c_x = d_{b_1} \circ d_{b_2} \circ \cdots \circ d_{b_k} \circ \cdots

where \circ denotes function composition. It can be shown that each cx will map the common basin of attraction of d0 and d1 to a single point px in M. The collection of points px, parameterized by a single real parameter x, is known as the de Rham curve.

Continuity Condition

When the fixed points are paired such that

d0(p1) = d1(p0)

then it may be shown that the resulting curve px is a continuous function of x. When the curve is continuous, it is not in general differentiable.

In the remaining of this page, we will assume the curves are continuous.


De Rham curves are by construction self-similar, since p(x) = d0(p(2x)) for x \in [0, 0.5] and p(x) = d1(p(2x − 1)) for x \in [0.5, 1].

The self-symmetries of all of the de Rham curves are given by the monoid that describes the symmetries of the infinite binary tree or Cantor set. This so-called period-doubling monoid is a subset of the modular group.

The image of the curve, i.e. the set of points \{p(x), x \in [0,1]\}, can be obtained by an Iterated function system using the set of contraction mappings \{d_0,\ d_1\}. But the result of an iterated function system with two contraction mappings is a de Rham curve if and only if the contraction mappings satisfy the continuity condition.

Classification and examples

Césaro curves

Césaro curve for a = 0.3 + i 0.3
Césaro curve for a = 0.5 + i 0.5

Césaro curves (or Césaro-Faber curves) are De Rham curves generated by affine transformations conserving orientation, with fixed points p0 = 0 and p1 = 1.

Because of these constraints, Césaro curves are uniquely determined by a complex number a such that | a | < 1 and | 1 − a | < 1.

The contraction mappings d0 and d1 are then defined as complex functions in the complex plane by:

d0(z) = az
d1(z) = a + (1 − a)z

For the value of a = (1 + i) / 2, the resulting curve is the Lévy C curve.

Koch–Peano curves

Koch–Peano curve for a = 0.6 + i 0.37
Koch–Peano curve for a = 0.6 + i 0.45

In a similar way, we can define the Koch–Peano family of curves as the set of De Rham curves generated by affine transformations reversing orientation, with fixed points p0 = 0 and p1 = 1.

These mappings are expressed in the complex plane as a function of \overline{z}, the complex conjugate of z:

d_0(z) = a\overline{z}
d_1(z) = a + (1-a)\overline{z}

The name of the family comes from its two most famous members. The Koch curve is obtained by setting:

a_\text{Koch}=\frac{1}{2} + i\frac{\sqrt{3}}{6}

while the Peano curve corresponds to:


General affine maps

Generic affine de Rham curve
Generic affine de Rham curve
Generic affine de Rham curve
Generic affine de Rham curve

The Césaro-Faber and Peano-Koch curves are both special cases of the general case of a pair of affine linear transformations on the complex plane. By fixing one endpoint of the curve at 0 and the other at one, the general case is obtained by iterating on the two transforms

1 & 0 & 0 \\ 
0 & \alpha &\delta \\ 
0 & \beta & \epsilon


1&0&0 \\ 
\alpha & 1-\alpha&\zeta \\ 

Being affine transforms, these transforms act on a point (u,v) of the 2-D plane by acting on the vector

1 \\
u \\
 v \end{pmatrix}

The midpoint of the curve can be seen to be located at (u,v) = (α,β); the other four parameters may be varied to create a large variety of curves.

The blancmange curve of parameter w can be obtained by setting \alpha=\beta=\epsilon=1/2, δ = ζ = 0 and η = w. That is:

1&0&0 \\ 
0 & 1/2&0 \\ 


 1&0&0 \\ 
1/2 & 1/2&0 \\ 

Since the blancmange curve of parameter w = 1 / 4 is the parabola of equation f(x) = 4x(1 − x), this illustrate the fact that in some occasion, de Rham curves can be smooth.

Minkowski's question mark function

Minkowski's question mark function is generated by the pair of maps

d_0(z) = \frac{z}{z+1}


d_1(z)= \frac{1}{z+1}


It is easy to generalize the definition by using more than two contraction mappings. If one uses n mappings, then the n-ary decomposition of x has to be used instead of the binary expansion of real numbers. The continuity condition has to be generalized in:

di(p(n − 1)) = d(i + 1)(p0), for i=0 \ldots n-2.

Such a generalization allows, for example, to produce the Sierpiński arrowhead curve (whose image is the Sierpiński triangle), by using the contraction mappings of an iterated function system that produces the Sierpiński triangle.

See also


  • Georges de Rham, On Some Curves Defined by Functional Equations (1957), reprinted in Classics on Fractals, ed. Gerald A. Edgar (Addison-Wesley, 1993), pp. 285–298.
  • Linas Vepstas, A Gallery of de Rham curves, (2006).
  • Linas Vepstas, Symmetries of Period-Doubling Maps, (2006). (A general exploration of the modular group symmetry in fractal curves.)

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Georges de Rham — Born 10 September 1903(1903 09 10) Died 9 October 1990(1990 10 09) (aged 87) …   Wikipedia

  • Lévy C curve — In mathematics, the Lévy C curve is a self similar fractal that was first described and whose differentiability properties were analysed by Ernesto Cesàro in 1906 and G. Farber in 1910, but now bears the name of French mathematician Paul Pierre… …   Wikipedia

  • Blancmange curve — In mathematics, the blancmange curve is a fractal curve constructible by midpoint subdivision. It is also known as the Takagi curve, after Teiji Takagi who described it in 1903, or as the Takagi–Landsberg curve, a generalization of the curve. The …   Wikipedia

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

  • List of curves — This is a list of curves, by Wikipedia page. See also list of curve topics, list of surfaces, Riemann surface. Algebraic curves*Cubic plane curve *Quartic plane curve *Quintic plane curve *Sextic plane curveRational curves*Ampersand curve… …   Wikipedia

  • Iterated function system — In mathematics, iterated function systems or IFSs are a method of constructing fractals; the resulting constructions are always self similar.IFS fractals as they are normally called can be of any number of dimensions, but are commonly computed… …   Wikipedia

  • Courbe du blancmanger — En mathématiques, la courbe du blancmanger est une courbe fractale. Elle est aussi connue comme la courbe de Takagi, d après Teiji Takagi qui l a décrite en 1903, ou comme la courbe Takagi–Landsberg, une généralisation de la courbe. Le nom… …   Wikipédia en Français

  • Modular group — For a group whose lattice of subgroups is modular see Iwasawa group. In mathematics, the modular group Γ is a fundamental object of study in number theory, geometry, algebra, and many other areas of advanced mathematics. The modular group can be… …   Wikipedia

  • Minkowski's question mark function — Minkowski question mark function. ?(x) is on the left and ?(x) x is on the right. In …   Wikipedia

  • Fonction point d'interrogation — de Minkowski. La fonction point d interrogation est, en mathématiques, une fonction, notée . Cette fonction fut définie par Hermann Minkowski en 1904 …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.