# Limit ordinal

A

**limit ordinal**is anordinal number which is neither zero nor asuccessor ordinal .Various equivalent ways to express this are:

*It cannot be reached via the ordinal successor operation "S"; in precise terms, we say λ is a limit ordinal if and only if λ > 0 and for any β < λ, there exists γ such that β < γ < λ.

*It is equal to thesupremum of all the ordinals below it, but is not zero. (Compare with a successor ordinal: the set of ordinals below it has a maximum, so the supremum is this maximum, the previous ordinal.)

*It is not zero and has no maximum element.

*It can be written in the form ωα for α > 0. That is, in the ml|Ordinal arithmetic|Cantor normal form|Cantor normal form there is no finite number as last term, and the ordinal is nonzero.

*It is alimit point of the class of ordinal numbers, with respect to theorder topology . (The other ordinals areisolated point s.)Some contention exists on whether or not 0 should be classified as a limit ordinal, as it does not have an immediate predecessor; some textbooks include 0 in the class of limit ordinals [

*Thomas Jech, "Set Theory". Third Millennium edition. Springer.*] while others exclude it [*Kenneth Kunen, "Set Theory. An introduction to independence proofs". North-Holland.*] .**Examples**Because the class of ordinal numbers is

well-order ed, there is a smallest infinite limit ordinal; denoted by ω. This ordinal ω is also the smallest infinite ordinal (disregarding "limit"), as it is theleast upper bound of thenatural numbers . Hence ω represents the order type of the natural numbers. The next limit ordinal above the first is ω + ω = ω·2, and then we have ω·"n", for any natural number "n". Taking the union (thesupremum operation on any set of ordinals) of all the ω·n, we get ω·ω = ω^{2}. This process can be iterated as follows to produce::$omega^3,\; omega^4,\; ldots,\; omega^omega,\; omega^\{omega^omega\},\; ldots,\; epsilon\_0\; =\; omega^\{omega^\{omega^\{cdots\},\; ldots$In general, all of these recursive definitions via multiplication, exponentiation, repeated exponentiation, etc. yield limit ordinals. All of the ordinals discussed so far are still

countable ordinals; it can be proved that there exists norecursively enumerable scheme of naming just all the countable ordinals.Beyond the countable, the first uncountable ordinal is usually denoted ω

_{1}. It is also a limit ordinal.Continuing, one can obtain the following (all of which are now increasing in cardinality):

:$omega\_2,\; omega\_3,\; ldots,\; omega\_omega,\; omega\_\{omega^omega\},ldots$

In general, we always get a limit ordinal when taking the union of a set of ordinals that has no

maximum element.The ordinals of the form ω²α, for α > 0, are limits of limits, etc.

**Properties**The classes of successor ordinals and limit ordinals (of various cofinalities) as well as zero exhaust the entire class of ordinals, so these cases are often used in proofs by

transfinite induction or definitions bytransfinite recursion . Limit ordinals represent a sort of "turning point" in such procedures, in which one must use limiting operations such as taking the union over all preceding ordinals. In principle, one could do anything at limit ordinals, but taking the union is continuous in the order topology and this is usually desirable.If we use the

Von Neumann cardinal assignment , every infinitecardinal number is also a limit ordinal (and this is a fitting observation, as "cardinal" derives from the Latin "cardo" meaning "hinge" or "turning point"): the proof of this fact is done by simply showing that every infinite successor ordinal isequinumerous to a limit ordinal via the Hotel Infinity argument.Cardinal numbers have their own notion of successorship and limit (everything getting upgraded to a higher level).

**References****See also***

ordinal arithmetic

*limit cardinal

*Wikimedia Foundation.
2010.*

### Look at other dictionaries:

**Ordinal number**— This article is about the mathematical concept. For number words denoting a position in a sequence ( first , second , third , etc.), see Ordinal number (linguistics). Representation of the ordinal numbers up to ωω. Each turn of the spiral… … Wikipedia**Ordinal collapsing function**— In mathematical logic and set theory, an ordinal collapsing function (or projection function) is a technique for defining (notations for) certain recursive large countable ordinals, whose principle is to give names to certain ordinals much larger … Wikipedia**Ordinal arithmetic**— In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an… … Wikipedia**Limit cardinal**— In mathematics, limit cardinals are a type of cardinal number.With the cardinal successor operation defined, we can define a limit cardinal in analogy to that for limit ordinals: λ is a (weak) limit cardinal if and only if λ is neither a… … Wikipedia**limit number**— In the theory of ordinal numbers, a limit ordinal is an ordinal x such that there is no greatest ordinal smaller than x . The first limit ordinal is ω, the ordinal that measures the length of the standard ordering of the natural numbers … Philosophy dictionary**Ordinal notation**— In mathematical logic and set theory, an ordinal notation is a finite sequence of symbols from a finite alphabet which names an ordinal number according to some scheme which gives meaning to the language. There are many such schemes of ordinal… … Wikipedia**Ordinal analysis**— In proof theory, ordinal analysis assigns ordinals (often large countable ordinals) to mathematical theories as a measure of their strength. The field was formed when Gerhard Gentzen in 1934 used cut elimination to prove, in modern terms, that… … Wikipedia**Ordinal indicator**— º redirects here. It is not to be confused with the degree symbol °. ºª Ordinal indicator Punctuation … Wikipedia**Large countable ordinal**— In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of… … Wikipedia**Successor ordinal**— When defining the ordinal numbers, an absolutely fundamental operation that we can perform on them is a successor operation S to get the next higher one. Using von Neumann s ordinal numbers (the standard ordinals used in set theory), we have, for … Wikipedia