Distributed constraint optimization

Distributed constraint optimization (DCOP or DisCOP) is the distributed analogue to constraint optimization. A DCOP is a problem in which a group of agents must distributedly choose values for a set of variables such that the cost of a set of constraints over the variables is either minimized or maximized.
Distributed Constraint Satisfaction is a framework for describing a problem in terms of constraints that are known and enforced by distinct participants (agents). The constraints are described on some variables with predefined domains, and have to be assigned to the same values by the different agents.
Problems defined with this framework can be solved by any of the algorithms that are proposed for it.
The framework was used under different names in the 1980s. The first known usage with the current name is in 1990.
Contents
Definitions
DCOP
A DCOP can be defined as a tuple , where:
 R is a set of agents;
 T is a set of variables, ;
 is a set of domains, , where each is a finite set containing the values to which its associated variable may be assigned;
 f is function^{[1]}^{[2]}
that maps every possible variable assignment to a cost. This function can also be thought of as defining constraints between variables however the variables must not Hermatian;  γ is a function mapping variables to their associated agent. implies that it is agent a_{j}'s responsibility to assign the value of variable v_{i}. Note that it is not necessarily true that α is either an injection or surjection; and
 η is an operator that aggregates all of the individual f costs for all possible variable assignments. This is usually accomplished through summation:
.
The objective of a DCOP is to have each agent assign values to its associated variables in order to either minimize or maximize η(f) for a given assignment of the variables.
Context
A Context is a variable assignment for a DCOP. This can be thought of as a function mapping variables in the DCOP to their current values:
Note that a context is essentially a partial solution and need not contain values for every variable in the problem; therefore, implies that the agent α(v_{i}) has not yet assigned a value to variable v_{i}. Given this representation, the "domain" (i.e., the set of input values) of the function
f
can be thought of as the set of all possible contexts for the DCOP. Therefore, in the remainder of this article we may use the notion of a context (i.e., the t function) as an input to the f function.Example problems
Distributed graph coloring
The graph coloring problem is as follows: given a graph and a set of colors C, assign each vertex, , a color, , such that the number of adjacent vertices with the same color is minimized.
As a DCOP, there is one agent per vertex that is assigned to decide the associated color. Each agent has a single variable whose associated domain is of cardinality  C  (there is one domain value for each possible color). For each vertex , create a variable in the DCOP with domain D_{i} = C. For each pair of adjacent vertices , create a constraint of cost 1 if both of the associated variables are assigned the same color:
The objective, then, is to minimize η(f).
Distributed multiple knapsack problem
The distributed multiple variant of the knapsack problem is as follows: given a set of items of varying volume and a set of knapsacks of varying capacity, assign each item to a knapsack such that the amount of overflow is minimized. Let I be the set of items, K be the set of knapsacks, be a function mapping items to their volume, and be a function mapping knapsacks to their capacities.
To encode this problem as a DCOP, for each create one variable with associated domain D_{i} = K. Then for all possible context t:
where r(t,k) is a function such that
Algorithms
DCOP algorithms can be classified according to the search strategy (bestfirst search or depthfirst branchandbound search), the synchronization among agents (synchronous or asynchronous), the communication among agents (pointtopoint with neighbors in the constraint graph or broadcast) and the main communication topology (chain or tree).^{[3]} ADOPT, for example, uses bestfirst search, asynchronous synchronization, pointtopoint communication between neighboring agents in the constraint graph and a constraint tree as main communication topology.
Algorithm Name Year Introduced Memory Complexity Number of Messages Correctness/
CompletenessImplementations NCBB
NoCommitment Branch and Bound^{[4]}2006 Polynomial (or anyspace^{[5]}) Exponential Proven Reference Implementation: not publicly released
DPOP
Distributed Pseudotree Optimization Procedure^{[6]}2005 Exponential Linear Proven Reference Implementation: FRODO (GNU Affero GPL)
OptAPO
Asynchronous Partial Overlay^{[7]}2004 Polynomial Exponential Proven, but proof of completeness has been challenged^{[8]} Reference Implementation: OptAPO
Adopt
Asynchronous Backtracking^{[9]}2003 Polynomial (or anyspace^{[10]}) Exponential Proven Reference Implementation: Adopt
Secure Multiparty Computation For Solving DisCSPs
(MPCDisCSP1MPCDisCSP4)^{[citation needed]}2003 ^{[citation needed]} ^{[citation needed]} Note: secure if 1/2 of the participants are trustworthy ^{[citation needed]} Secure Computation with SemiTrusted Servers^{[citation needed]} 2002 ^{[citation needed]} ^{[citation needed]} Note: security increases with the number of trustworthy servers ^{[citation needed]} ABTR^{[citation needed]}
Asynchronous Backtracking with Reordering2001 ^{[citation needed]} ^{[citation needed]} Note: eordering in ABT with bounded nogoods ^{[citation needed]} DMAC^{[citation needed]}
Maintaining Asynchronously Consistencies2001 ^{[citation needed]} ^{[citation needed]} Note: the fastest algorithm ^{[citation needed]} AAS^{[citation needed]}
Asynchronous Aggregation Search2000 ^{[citation needed]} ^{[citation needed]} aggregation of values in ABT ^{[citation needed]} DFC^{[citation needed]}
Distributed Forward Chaining2000 ^{[citation needed]} ^{[citation needed]} Note: low, comparable to ABT ^{[citation needed]} DBA
Distributed Breakout Algorithm1995 ^{[citation needed]} ^{[citation needed]} Note: incomplete but fast FRODO version 1 AWC^{[citation needed]}
Asynchronous WeakCommitment1994 ^{[citation needed]} ^{[citation needed]} Note: reordering, fast, complete (only with exponential space) ^{[citation needed]} ABT^{[citation needed]}
Asynchronous Backtracking1992 ^{[citation needed]} ^{[citation needed]} Note: static ordering, complete ^{[citation needed]} Hybrids of these DCOP algorithms also exist. BnBAdopt^{[3]}, for example, changes the search strategy of Adopt from bestfirst search to depthfirst branchandbound search.
See also
Notes and references
 ^ "" denotes the power set of V
 ^ "" and "" denote the Cartesian product.
 ^ ^{a} ^{b} Yeoh, William; Felner, Ariel; Koenig, Sven (2008), "BnBADOPT: An Asynchronous BranchandBound DCOP Algorithm", Proceedings of the Seventh International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 591–598, http://idmlab.org/bib/abstracts/Koen08d.html
 ^ Chechetka, Anton; Sycara, Katia (May 2006), "NoCommitment Branch and Bound Search for Distributed Constraint Optimization", Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1427–1429, http://www.ri.cmu.edu/pub_files/pub4/chechetka_anton_2006_2/chechetka_anton_2006_2.pdf
 ^ Chechetka, Anton; Sycara, Katia (March 2006), "An Anyspace Algorithm for Distributed Constraint Optimization", Proceedings of the AAAI Spring Symposium on Distributed Plan and Schedule Management, http://www.ri.cmu.edu/pub_files/pub4/chechetka_anton_2006_1/chechetka_anton_2006_1.pdf
 ^ Petcu, Adrian; Faltings, Boi (August 2005), "DPOP: A Scalable Method for Multiagent Constraint Optimization", Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI 2005, Edinburgh, Scotland, pp. 266271, http://liawww.epfl.ch/cgibin/Pubs/single_entry?bibtex_key=Petcu2005
 ^ Mailler, Roger; Lesser, Victor (2004), "Solving Distributed Constraint Optimization Problems Using Cooperative Mediation", Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, IEEE Computer Society, pp. 438–445, ftp://mas.cs.umass.edu/pub/mailler/mailler569.pdf
 ^ Grinshpoun, Tal; Zazon, Moshe; Binshtok, Maxim; Meisels, Amnon (2007), "Termination Problem of the APO Algorithm", Proceedings of the Eighth International Workshop on Distributed Constraint Reasoning, pp. 117–124, http://liawww.epfl.ch/Publications/Archive/DCR07Proceedings.pdf
 ^ The originally published version of Adopt was uninformed, see Modi, Pragnesh Jay; Shen, WeiMin; Tambe, Milind; Yokoo, Makoto (2003), "An asynchronous complete method for distributed constraint optimization", Proceedings of the second international joint conference on autonomous agents and multiagent systems, ACM Press, pp. 161–168, http://teamcore.usc.edu/papers/2003/modiaamas03.pdf. The original version of Adopt was later extended to be informed, that is, to use estimates of the solution costs to focus its search and run faster, see Ali, Syed; Koenig, Sven; Tambe, Milind (2005), "Preprocessing Techniques for Accelerating the DCOP Algorithm ADOPT", Proceedings of the fourth international joint conference on autonomous agents and multiagent systems, ACM Press, pp. 1041–1048, http://teamcore.usc.edu/papers/2005/aamaspaper.pdf. This extension of Adopt is typically used as reference implementation of Adopt.
 ^ Matsui, Toshihiro; Matsuo, Hiroshi; Iwata, Akira (February), "Efficient Method for Asynchronous Distributed Constraint Optimization Algorithm", Proceedings of Artificial Intelligence and Applications, pp. 727–732, http://www.matlab.nitech.ac.jp/~matsuo/AIA051.pdf
Books and Surveys
 Faltings, Boi (2006), "Distributed Constraint Programming", in Walsh, Toby, Handbook of Constraint Programming, Elsevier, ISBN 9780444527264, http://www.elsevier.com/wps/find/bookdescription.cws_home/708863/description A chapter in an edited book.
 Shoham, Yoav; LeytonBrown, Kevin (2009), Multiagent Systems: Algorithmic, GameTheoretic, and Logical Foundations, New York: Cambridge University Press, ISBN 9780521899437, http://www.masfoundations.org See Chapters 1 and 2; downloadable free online.
 Yokoo, Makoto (2001), Distributed constraint satisfaction: Foundations of cooperation in multiagent systems, Springer, ISBN 9783540675969
 Yokoo, M., and Hirayama, K. (2000). Algorithms for distributed constraint satisfaction: A review. Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems (pp. 185–207). A survey.
Categories:
Wikimedia Foundation. 2010.
Look at other dictionaries:
Constraint optimization — In constraint satisfaction, constrained optimization (also called constraint optimization) seeks for a solution maximizing or minimizing a cost function. Contents 1 Definition 2 Solution methods 2.1 Branch and bound … Wikipedia
Cooperative distributed problem solving — is a network of semi autonomous processing nodes working together to solve a problem, typically in a multi agent system. That is concerned with the investigation of problem subdivision, sub problem distribution, results synthesis, optimisation of … Wikipedia
Cooperative optimization — is a global optimization method invented by chinese mathematician Xiao Fei Huang, that can solve real world NP hard optimization problems (up to millions of variables) with outstanding performances and unprecedented speeds. It knows whether a… … Wikipedia
Multidisciplinary design optimization — Multi disciplinary design optimization (MDO) is a field of engineering that uses optimization methods to solve design problems incorporating a number of disciplines. As defined by Prof. Carlo Poloni, MDO is the art of finding the best compromise … Wikipedia
Multiobjective optimization — (or multi objective programming),[1][2] also known as multi criteria or multi attribute optimization, is the process of simultaneously optimizing two or more conflicting objectives subject to certain constraints. Multiobjective optimization… … Wikipedia
DisCSP — Distributed Constraint Satisfaction Problems (DisCSPs) are a form of constraint satisfaction problems.Distributed Constraint Satisfaction is a framework for describing a problem in terms of constraints that are known and enforced by distinct… … Wikipedia
List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… … Wikipedia
CALO — is an artificial intelligence project that attempts to integrate numerous AI technologies into an assistant that learns to help manage your office environment. OverviewCALO is one of the most ambitious artificial intelligence projects in US… … Wikipedia
DCOP — For the use of this acronym as it pertains to Artificial Intelligence, see Distributed constraint optimization. DCOP, which stands for Desktop COmmunication Protocol, is a light weight interprocess and software componentry communication system.… … Wikipedia
Memetic algorithm — Memetic algorithms (MA) represent one of the recent growing areas of research in evolutionary computation. The term MA is now widely used as a synergy of evolutionary or any population based approach with separate individual learning or local… … Wikipedia