 Orthonormal frame

In Riemannian geometry and relativity theory, an orthonormal frame is a tool for studying the structure of a differentiable manifold equipped with a metric. If M is a manifold equipped with a metric g, then an orthonormal frame at a point P of M is an ordered basis of the tangent space at P consisting of vectors which are orthonormal with respect to the bilinear form g_{P}.
See also
 Frame (linear algebra)
 Frame bundle
 kframe
 Moving frame
This geometryrelated article is a stub. You can help Wikipedia by expanding it.v · Categories:  Riemannian geometry
 Geometry stubs
Wikimedia Foundation. 2010.
Look at other dictionaries:
Frame bundle — In mathematics, a frame bundle is a principal fiber bundle F(E) associated to any vector bundle E. The fiber of F(E) over a point x is the set of all ordered bases, or frames, for Ex. The general linear group acts naturally on F(E) via a change… … Wikipedia
Frame fields in general relativity — In general relativity, a frame field (also called a tetrad or vierbein) is a set of four orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The… … Wikipedia
Frame — A frame is a structural system that supports other components of a physical construction. Frame may also refer to:Engineering construction* Framing (construction), a building term known as light frame construction * Frame (vehicle), to which… … Wikipedia
Orthonormal basis — In mathematics, particularly linear algebra, an orthonormal basis for inner product space V with finite dimension is a basis for V whose vectors are orthonormal.[1][2][3] For example, the standard basis for a Euclidean space Rn is an orthonormal… … Wikipedia
Frame of reference — A frame of reference in physics, may refer to a coordinate system or set of axes within which to measure the position, orientation, and other properties of objects in it, or it may refer to an observational reference frame tied to the state of… … Wikipedia
Frame of a vector space — This article is about a generalization of bases to linearly dependent sets of vectors. For a linearly independent set of vectors, see k frame. In linear algebra, a frame of a vector space V with an inner product can be seen as a generalization of … Wikipedia
Darboux frame — In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non umbilic point of a surface … Wikipedia
Moving frame — The Frenet Serret frame on a curve is the simplest example of a moving frame. In mathematics, a moving frame is a flexible generalization of the notion of an ordered basis of a vector space often used to study the extrinsic differential geometry… … Wikipedia
Spin structure — In differential geometry, a spin structure on an orientable Riemannian manifold allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. Spin structures have wide applications to mathematical … Wikipedia
Rigid rotor — The rigid rotor is a mechanical model that is used to explain rotating systems. An arbitrary rigid rotor is a 3 dimensional rigid object, such as a top. To orient such an object in space three angles are required. A special rigid rotor is the… … Wikipedia
16+© Academic, 20002019 Contact us: Technical Support, Advertising
Dictionaries export, created on PHP, Joomla, Drupal, WordPress, MODx.Share the article and excerpts
We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.
Orthonormal frame
 Orthonormal frame

In Riemannian geometry and relativity theory, an orthonormal frame is a tool for studying the structure of a differentiable manifold equipped with a metric. If M is a manifold equipped with a metric g, then an orthonormal frame at a point P of M is an ordered basis of the tangent space at P consisting of vectors which are orthonormal with respect to the bilinear form g_{P}.
See also
 Frame (linear algebra)
 Frame bundle
 kframe
 Moving frame
This geometryrelated article is a stub. You can help Wikipedia by expanding it.