Light cone

A light cone is the path that a flash of light, emanating from a single event (localized to a single point in space and a single moment in time) and traveling in all directions, would take through spacetime. If we imagine the light confined to a twodimensional plane, the light from the flash spreads out in a circle after the event E occurs, and if we graph the growing circle with the vertical axis of the graph representing time, the result is a cone, known as the future light cone. The past light cone behaves like the future light cone in reverse, a circle which contracts in radius at the speed of light until it converges to a point at the exact position and time of the event E. In reality, there are three space dimensions, so the light would actually form an expanding or contracting sphere in 3D space rather than a circle in 2D, and the light cone would actually be a fourdimensional version of a cone whose crosssections form 3D spheres (analogous to a normal threedimensional cone whose crosssections form 2D circles), but the concept is easier to visualize with the number of spatial dimensions reduced from three to two.
Because signals and other causal influences cannot travel faster than light (see special relativity), the light cone plays an essential role in defining the concept of causality for a given event E, the set of events that lie on or inside the past light cone of E would also be the set of all events that could send a signal that would have time to reach E and influence it in some way. For example, at a time ten years before E, if we consider the set of all events in the past light cone of E which occur at that time, the result would be a sphere (2D: disk) with a radius of ten lightyears centered on the future position E will occur. So, any point on or inside the sphere could send a signal moving at the speed of light or slower that would have time to influence the event E, while points outside the sphere at that moment would not be able to have any causal influence on E. Likewise, the set of events that lie on or inside the future light cone of E would also be the set of events that could receive a signal sent out from the position and time of E, so the future light cone contains all the events that could potentially be causally influenced by E. Events which lie neither in the past or future light cone of E cannot influence or be influenced by E in relativity.
Contents
Mathematical Construction
In special relativity, a light cone (or null cone) is the surface describing the temporal evolution of a flash of light in Minkowski spacetime. This can be visualized in 3space if the two horizontal axes are chosen to be spatial dimensions, while the vertical axis is time.^{[1]}
The light cone is constructed as follows. Taking as event p a flash of light (light pulse) at time t_{0}, all events that can be reached by this pulse from p form the future light cone of p, while those events that can send a light pulse to p form the past light cone of p.
Given an event E, the light cone classifies all events in space+time into 5 distinct categories:
 Events on the future light cone of E.
 Events on the past light cone of E.
 Events inside the future light cone of E are those affected by a material particle emitted at E.
 Events inside the past light cone of E are those that can emit a material particle and affect what is happening at E.
 All other events are in the (absolute) elsewhere of E and are those that cannot affect or be affected by E.
The above classifications hold true in any frame of reference; that is, an event judged to be in the light cone by one observer, will also be judged to be in the same light cone by all other observers, no matter their frame of reference. This is why the concept is so powerful.
Keep in mind, we're talking about an event, a specific location at a specific time. To say that one event cannot affect another, that means that there isn't enough time for light to get from one to the other. Light from each event will eventually (after some time) make it to the old location of the other event, but since that's at a later time, it's not the same event.
As time progresses forward, the future light cone of a given event will eventually grow to encompass more and more locations (in other words, the 3D sphere that represents the crosssection of the 4D light cone at a particular moment in time becomes larger at later times). Likewise, if we imagine running time backwards from a given event, the event's past light cone would likewise encompass more and more locations at earlier and earlier times. The further locations will of course be at more distant times, for example if we are considering the past light cone of an event which takes place on Earth today, a star 10,000 light years away would only be inside the past light cone at times 10,000 years or more in the past. The past light cone of an event on presentday Earth, at its very edges, includes very distant objects (every object in the observable universe), but only what they looked like long ago, when the universe was young.
Two events at different locations, at the same time (according to a specific frame of reference), are always outside of each other's past and future light cones; light cannot travel instantaneously. Other observers, of course, might see the events happening at different times and at different locations, but one way or another, the two events will likewise be seen to be outside of each other's cones.
If using a system of units where the speed of light in vacuum is defined as exactly 1, for example if space is measured in lightseconds and time is measured in seconds, then the cone will have a slope of 45°, because light travels a distance of one lightsecond in vacuum during one second. Since special relativity requires the speed of light to be equal in every inertial frame, all observers must arrive at the same angle of 45° for their light cones. Commonly a Minkowski diagram is used to illustrate this property of Lorentz transformations. Elsewhere, an integral part of light cones, is the region of spacetime outside the light cone at a given event (a point in spacetime). Events that are elsewhere from each other are mutually unobservable, and cannot be causally connected.
(The 45° figure really only has meaning in spacespace, as we try to understand spacetime by making spacespace drawings. Spacespace tilt is measured by angles, and calculated with trig functions. Spacetime tilt is measured by rapidity, and calculated with hyperbolic functions.)
Lightcones in general relativity
In general relativity, the future light cone is the boundary of the causal future of a point and the past light cone is the boundary of its causal past.
In a curved spacetime, the lightcones cannot all be tilted so that they are 'parallel'; this reflects the fact that the spacetime is curved and is essentially different from Minkowski space. In vacuum regions (those points of spacetime free of matter), this inability to tilt all the lightcones so that they are all parallel is reflected in the nonvanishing of the Weyl tensor.
See also
 Absolute future
 Absolute past
 Hyperbolic partial differential equation
 Light cone coordinates
 Method of characteristics
 Minkowski diagram
 Monge cone
 Wave equation
References
External links
 The EinsteinMinkowski Spacetime: Introducing the Light Cone
 The Paradox of Special Relativity
 RSS feed of stars in one's personal light cone
Categories: Astrophysics
 Relativity
 Lorentzian manifolds
 Light
Wikimedia Foundation. 2010.
Look at other dictionaries:
light cone — šviesos kūgis statusas T sritis fizika atitikmenys: angl. light cone; luminous cone vok. Lichtkegel, m; Lichtkonus, m rus. световой конус, m pranc. cône de lumière, m … Fizikos terminų žodynas
light cone — n. Physics a surface in space time, represented as a cone in three dimensions, comprising all the points from which a light signal would reach a given point (at the apex) simultaneously, and that therefore appear simultaneous to an observer at… … Useful english dictionary
light cone — noun In special relativity, the pattern describing the temporal evolution of a flash of light in Minkowski spacetime. This is modeled in 3 space using the two horizontal axes as spatial dimensions, while the vertical axis is time … Wiktionary
Light cone coordinates — In relativity, light cone coordinates is a special coordinate system where two of the coordinates, x+ and x are null coordinates and all the other coordinates are spatial. Call them x perp.Assume we re working with a (d,1) Lorentzian… … Wikipedia
Light cone gauge — In theoretical physics, light cone gauge is an approach to remove the ambiguities arising from a gauge symmetry. While the term refers to several situations, a null component of a field A is set to zero (or a simple function of other variables)… … Wikipedia
minus light cone — neigiamasis šviesos kūgis statusas T sritis fizika atitikmenys: angl. minus light cone; negative luminous cone vok. negativer Lichtkonus, m rus. прошлый световой конус, m pranc. cône de lumière passée, m … Fizikos terminų žodynas
plus light cone — teigiamasis šviesos kūgis statusas T sritis fizika atitikmenys: angl. plus light cone; positive luminous cone vok. positiver Lichtkonus, m rus. будущий световой конус, m pranc. cône positif de lumière, m … Fizikos terminų žodynas
Cone cell — Neuron: Cone Cell Normalized responsivity spectra of human cone cells, S, M, and L types NeuroLex ID … Wikipedia
Lightemitting diode — LED redirects here. For other uses, see LED (disambiguation). Light emitting diode Red, pure green and blue LEDs of the 5mm diffused type Type Passive, optoelectronic Working principle Electr … Wikipedia
Light front quantization — In theoretical physics, light front quantization refers to a specific choice of the initial degrees of freedom i.e. canonical coordinates and their momenta. While the usual option in field theory is to determine their value at a particular value… … Wikipedia