Detonation of the 500-ton TNT explosive charge as part of Operation Sailor Hat. The initial shock wave is visible on the water surface and a shock condensation cloud is visible overhead.

Detonation involves a supersonic exothermic front accelerating through a medium that eventually drives a shock front propagating directly in front of it. Detonations are observed in both conventional solid and liquid explosives,[1] as well as in reactive gases. The velocity of detonations in solid and liquid explosives is much higher than that in gaseous ones, which allows far clearer resolution of the wave system in the latter.[clarification needed What does phrase "resolution of the wave system" mean?]

Gaseous detonations normally occur in confined systems but are occasionally observed in large vapor clouds. They are often associated with a gaseous mixture of fuel and oxidant of a composition, somewhat below conventional flammability limits. There is an extraordinary variety of fuels that may be present as gases, as droplet fogs and as dust suspensions. Other materials, such as acetylene, ozone and hydrogen peroxide are detonable in the absence of oxygen, fuller lists are given by both Stull[2] and Bretherick.[3] Oxidants include halogens, ozone, hydrogen peroxide and oxides of nitrogen and chlorine.

In terms of external damage, it is important to distinguish between detonations and deflagrations where the exothermic wave is subsonic and maximum pressures are at most a quarter[citation needed] of those generated by the former. Processes involved in the transition between deflagration and detonation are covered thoroughly by Nettleton.[4]



French détoner, to explode; from Latin detonare, to expend thunder; from de-, ~off + tonare, to thunder


The simplest theory to predict the behavior of detonations in gases is known as Chapman-Jouguet (CJ) theory, developed around the turn of the 20th century. This theory, described by a relatively simple set of algebraic equations, models the detonation as a propagating shock wave accompanied by exothermic heat release. Such a theory confines the chemistry and diffusive transport processes to an infinitely thin zone.

A more complex theory was advanced during World War II independently by Zel'dovich, von Neumann, and W. Doering.[5][6][7] This theory, now known as ZND theory, admits finite-rate chemical reactions and thus describes a detonation as an infinitely thin shock wave followed by a zone of exothermic chemical reaction. With a reference frame of a stationary shock, the following flow is subsonic, so that an acoustic reaction zone follows immediately behind the lead front, the Chapman-Jouguet condition.[8][9] There is also some evidence that the reaction zone is semi-metallic in some explosives.[10]

Both theories describe one-dimensional and steady wave fronts. However, in the 1960s, experiments revealed that gas-phase detonations were most often characterized by unsteady, three-dimensional structures, which can only in an averaged sense be predicted by one-dimensional steady theories. Indeed, such waves are quenched as their structure is destroyed.[11][12] The Wood-Kirkwood detonation theory can correct for some of these limitations.[13]

Experimental studies have revealed some of the conditions needed for the propagation of such fronts. In confinement, the range of composition of mixes of fuel and oxidant and self-decomposing substances with inerts are slightly below the flammability limits and for spherically expanding fronts well below them.[14] The influence of increasing the concentration of diluent on expanding individual detonation cells has been elegantly demonstrated.[15] Similarly their size grows as the initial pressure falls.[16] Since cell widths must be matched with minimum dimension of containment, any wave overdriven by the initiator will be quenched.

Mathematical modeling has steadily advanced to predicting the complex flow fields behind shocks inducing reactions.[17][18] To date none has adequately described how structure is formed and sustained behind unconfined waves.


A pulsed detonation engine ground demonstrator operating at a frequency of 35 Hz (35 detonation waves per second). Fuel and oxidizer are supplied to the engine using a valving system that matches with the operating frequency.

The main cause of damage from explosive devices is due to a supersonic blast front (a powerful shock wave) in the surrounding area. Therefore, the detonation is primarily associated with explosives and the acceleration of various projectiles. However, detonation waves may also be utilized for less destructive purposes like deposition of coatings to a surface[19] or cleaning of equipment (e.g. slag removal[20]). Pulse detonation engines utilize the detonation wave for aerospace propulsion.[21] The first flight of an aircraft powered by a pulse detonation engine took place at the Mojave Air & Space Port on January 31, 2008.[22]

In engines and firearms

Unintentional detonation when deflagration is desired is a problem in some devices. In internal combustion engines it is called engine knocking and causes loss of power and excessive heating of certain components. In fire arms, it may cause catastrophic and possibly lethal failure.

See also


  1. ^ Fickett; Davis (1979). Detonation. Univ. California Press. 
  2. ^ Stull (1977). Fundamentals of fire and explosion. Monograph Series. 10. A.I.Chem.E.. p. 73. 
  3. ^ Bretherick (1979). Handbook of Reactive Chemical Hazards. London: Butterworths. 
  4. ^ Nettleton (1987). Gaseous Detonations: Their Nature, Effects and Control. London: Butterworths. 
  5. ^ Zel'dovich; Kompaneets (1960). Theory of Detonation. New York: Academic Press. 
  6. ^ von Neumann. Progress report on the theory of detonation waves, OSRD Report No. 549 (Report). 
  7. ^ Doring (1943). Ann. Physik 43: 421. 
  8. ^ Chapman (1899). Phil. Mag. 47: 390. 
  9. ^ Jouguet (1905). J. Maths Pure Appl. 7: 347. 
  10. ^ Reed, Evan J.; Riad Manaa, M.; Fried, Laurence E.; Glaesemann, Kurt R.; Joannopoulos, J. D. (2007). "A transient semimetallic layer in detonating nitromethane". Nature Physics 4 (1): 72. Bibcode 2008NatPh...4...72R. doi:10.1038/nphys806. 
  11. ^ Edwards, D.H., Thomas, G.O., and Nettleton, M.A. (1979). "The Diffraction of a Planar Detonation Wave at an Abrupt Area Change". Journal of Fluid Mechanics 95 (1): 79–96. doi:10.1017/S002211207900135X. 
  12. ^ Edwards, Nettleton and Thomas (1981). "Gas Dynamics of Detonations and Explosions". Prog. In Astro. And Aero. 75. 
  13. ^ Glaesemann, Kurt R.; Fried, Laurence E. (2007). "Improved wood–kirkwood detonation chemical kinetics". Theoretical Chemistry Accounts 120: 37. doi:10.1007/s00214-007-0303-9. 
  14. ^ Nettleton (1980). Fire Prev. Sci. And Tech. (23): 29. 
  15. ^ Munday, G., Ubbelohde, A.R., and Wood, I.F. (1968). "Fluctuating Detonation in Gases". Proceedings of the Royal Society A 306 (1485): 171–178. doi:10.1098/rspa.1968.0143. 
  16. ^ Barthel, H. O. (1974). "Predicted Spacings in Hydrogen-Oxygen-Argon Detonations". Physics of Fluids 17 (8): 1547–1553. doi:10.1063/1.1694932. 
  17. ^ Oran; Boris (1987). Numerical Simulation of Reactive Flows. Elsevier Publishers. 
  18. ^ Sharpe, G.J., and Quirk, J.J. (2008). "Nonlinear cellular dynamics of the idealized detonation model: Regular cells". Combustion Theory and Modelling 12 (1): 1–21. 
  19. ^ Nikolaev, Yu.A., Vasil'ev, A.A., and Ul'yanitskii, B.Yu. (2003). "Gas Detonation and its Application in Engineering and Technologies (Review)". Combustion, Explosion, and Shock Waves 39 (4): 382–410. doi:10.1023/A:1024726619703. 
  20. ^ Huque, Z., Ali, M.R., and Kommalapati, R. (2009). "Application of pulse detonation technology for boiler slag removal". Fuel Processing Technology 90 (4): 558–569. doi:10.1016/j.fuproc.2009.01.004. 
  21. ^ Kailasanath, K. (2000). "Review of Propulsion Applications of Detonation Waves". AIAA Journal 39 (9): 1698–1708. 
  22. ^ Norris, G. (2008). "Pulse Power: Pulse Detonation Engine-powered Flight Demonstration Marks Milestone in Mojave". Aviation Week & Space Technology 168 (7): 60. 

External links

Wikimedia Foundation. 2010.


Look at other dictionaries:

  • détonation — [ detɔnasjɔ̃ ] n. f. • 1676; de détoner ♦ Bruit soudain et violent de ce qui détone. ⇒ déflagration, explosion. Détonation d une bombe, d un obus (⇒ éclatement) . Détonation d une arme à feu. « Avant hier, explosion dans le port; c est un cargo… …   Encyclopédie Universelle

  • Detonation — Détonation Détonation d une cache d armes près d East River, au terrain d aviation de Bagram, Afghanistan. Une détonation est une onde de combustion extrêmement violente, qui se propage à une vitesse supersonique. La détonation se produit dans un …   Wikipédia en Français

  • Détonation — d une cache d armes près d East River, au terrain d aviation de Bagram, Afghanistan. Une détonation est une onde de combustion extrêmement violente, qui se propage à une vitesse supersonique. La détonation se produit dans un mélange homogène de… …   Wikipédia en Français

  • Detonation — détonation фр. [дэтонасьо/н] Detonation нем. [дэтонацио/н] detonation англ. [дитоунэ/йшн] детонация ◊ détonner фр. [дэтонэ/] detonieren нем. [дэтони/рэн] …   Словарь иностранных музыкальных терминов

  • Detonation — Det o*na tion (d[e^]t [ o]*n[=a] sh[u^]n), n. [Cf. F. d[ e]tonation.] An explosion or sudden report made by the instantaneous decomposition or combustion of unstable substances; as, the detonation of gun cotton. [1913 Webster] …   The Collaborative International Dictionary of English

  • détonation — DÉTONATION. sub. f. Terme de Chimie. Inflammation violente et subite accompagnée de bruit, telle que celle de la poudre à canon et du nitre. La détonation du nitre …   Dictionnaire de l'Académie Française 1798

  • Detonation — (f) eng detonation …   Arbeitssicherheit und Gesundheitsschutz Glossar

  • detonation — 1670s, explosion accompanied by loud sound, from Fr. détonation, from M.L. detonationem (nom. detonatio), from L. detonare to thunder down, to release one s thunder, roar out, from de down (see DE (Cf. de )) + tonare to thunder (see THUNDER (Cf …   Etymology dictionary

  • Detonation — (lat.), in der Chemie s. Explosion; die Tonabweichung (s. Detonieren) …   Meyers Großes Konversations-Lexikon

  • Detonation — (lat.), Verpuffung, eine durch Druck, Stoß, Reibung, Licht, Wärme oder Elektrizität unter so starker Gasdrucksteigerung eintretende chem. Reaktion (Zersetzung oder Verbindung), daß ein Knall hörbar wird …   Kleines Konversations-Lexikon

  • detonation — index discharge (shot), noise, outburst Burton s Legal Thesaurus. William C. Burton. 2006 …   Law dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.