﻿

# Augmented Dickey-Fuller test

In statistics and econometrics, an augmented Dickey-Fuller test (ADF) is a test for a unit root in a time series sample. It is an augmented version of the Dickey-Fuller test for a larger and more complicated set of time series models.The augmented Dickey-Fuller (ADF) statistic, used in the test, is a negative number. The more negative it is, the stronger the rejection of the hypothesis that there is a unit root at some level of confidence. [ [http://econterms.com/glossary.cgi?action=++Search++&query=augmented+dickey-fuller Econterms] ]

Testing Procedure

The testing procedure for the ADF test is the same as for the Dickey-Fuller test but it is applied to the model

:

where $alpha$ is a constant, the coefficient on a time trend and $p$ the lag order of the autoregressive process. Imposing the contraints $alpha = 0$ and corresponds to modelling a random walk and using the constraint corresponds to modelling a random walk with a drift.

By including lags of the order $p$ the ADF formulation allows for higher-order autoregressive processes. This means that the lag length $p$ has to be determined when applying the test. One possible approach is to test down from high orders and examine the t-values on coefficients. An alternative approach is to examine information criteria such as the Akaike information criterion, Bayesian information criterion or the Hannon Quinn criterion.

The unit root test is then carried out under the null hypothesis $gamma = 0$ against the alternative hypothesis of $gamma < 0.$ Once a value for the test statistic

:$DF_ au = frac\left\{hat\left\{gamma\left\{SE\left(hat\left\{gamma\right\}\right)\right\}$

is computed it can be compared to the relevant critical value for the Dickey-Fuller Test. If the test statistic is greater (in absolute value) than the critical value, then the null hypothesis of $gamma = 0$ is rejected and no unit root is present.

Intuition

The intuition behind the test is that if the series is integrated then the lagged level of the series ($y_\left\{t-1\right\}$) will provide no relevant information in predicting the change in $y_\left\{t\right\}$ besides the one obtained in the lagged changes ($Delta y_\left\{t-k\right\}$). In that case the $gamma = 0$ null hypothesis is not rejected.

Examples

A model that includes a constant and a time trend is estimated using sample of 50 observations and yields the $DF_ au$ statistic of -4.57. This is more negative than the tabulated critical value of -3.50, so at the 95 per cent level the null hypothesis of a unit root will be rejected.

Alternatives

There are alternative unit root tests such as the Phillips-Perron test or the ADF-GLS procedure developed by Elliot, Rothenberg and Stock (1996).

References

* Elliott, G., Rothenberg, T. J. & J.H. Stock (1996) 'Efficient Tests for an Autoregressive Unit Root,' " Econometrica", Vol. 64, No. 4., pp. 813-836. [http://links.jstor.org/sici?sici=0012-9682%28199607%2964%3A4%3C813%3AETFAAU%3E2.0.CO%3B2-8 Stable URL]
* Greene, W. H. (2003) "Econometric Analysis, Fifth Edition" Prentice Hall: New Jersey.
* Said E. and David A. Dickey (1984), 'Testing for Unit Roots in Autoregressive Moving Average Models of Unknown Order', Biometrika, 71, p 599–607.

ee also

* Phillips-Perron test
* Unit root

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Augmented Dickey-Fuller-Test — Als Dickey Fuller Tests bezeichnet man in der Statistik die von D. Dickey und W. Fuller in den 70er Jahren entwickelten Einheitswurzeltests, die die Nullhypothese eines stochastischen Prozesses mit Einheitswurzel gegen die Alternative eines… …   Deutsch Wikipedia

• Dickey–Fuller test — In statistics, the Dickey–Fuller test tests whether a unit root is present in an autoregressive model. It is named after the statisticians D. A. Dickey and W. A. Fuller, who developed the test in 1979.[1] Contents 1 Explanation 2 Dealing with… …   Wikipedia

• Dickey-Fuller test — In statistics, the Dickey Fuller test tests whether a unit root is present in an autoregressive model. It is named after the statisticians D. A. Dickey and W. A. Fuller, who developed the test in the 1970s. Explanation A simple AR(1) model is: y… …   Wikipedia

• Dickey-Fuller-Test — Als Dickey Fuller Tests bezeichnet man in der Statistik die von D. Dickey und W. Fuller in den 70er Jahren entwickelten Einheitswurzeltests, die die Nullhypothese eines stochastischen Prozesses mit Einheitswurzel gegen die Alternative eines… …   Deutsch Wikipedia

• Dickey-Fuller-Test — ADF Test; von D. Dickey und W. Fuller entwickelter ⇡ Einheitswurzeltest, bei dem die erste Differenz einer Zeitreihe auf den gelagten (⇡ Lag) absoluten Wert der gleichen Zeitreihe regressiert wird. Liegt der Regressionskoeffizient nahe bei Null,… …   Lexikon der Economics

• Unit root test — A unit root test tests whether a time series variable is non stationary using an autoregressive model. The most famous test is the Augmented Dickey Fuller test. Another test is the Phillips Perron test. Both these tests use the existence of a… …   Wikipedia

• Staionnarité d'une série temporelle — Stationnarité d une série temporelle Une des grandes questions dans l étude de séries temporelles (ou chronologiques) est de savoir si celles ci suivent un processus stationnaire. On entend par là le fait que la structure du processus sous jacent …   Wikipédia en Français

• Stationnarite d'une serie temporelle — Stationnarité d une série temporelle Une des grandes questions dans l étude de séries temporelles (ou chronologiques) est de savoir si celles ci suivent un processus stationnaire. On entend par là le fait que la structure du processus sous jacent …   Wikipédia en Français

• Stationnarité d'une série temporelle — Une des grandes questions dans l étude de séries temporelles (ou chronologiques) est de savoir si celles ci suivent un processus stationnaire. On entend par là le fait que la structure du processus sous jacent supposé évolue ou non avec le temps …   Wikipédia en Français

• List of mathematics articles (A) — NOTOC A A Beautiful Mind A Beautiful Mind (book) A Beautiful Mind (film) A Brief History of Time (film) A Course of Pure Mathematics A curious identity involving binomial coefficients A derivation of the discrete Fourier transform A equivalence A …   Wikipedia