# Single-sideband modulation

**Single-sideband modulation**(**SSB**) is a refinement ofamplitude modulation that more efficiently uses electrical power and bandwidth. It is closely related to vestigial sideband modulation (VSB) (see below).Amplitude modulation produces a modulated output signal that has twice the bandwidth of the originalbaseband signal. Single-sideband modulation avoids this bandwidth doubling, and the power wasted on a carrier, at the cost of somewhat increased device complexity.The first U. S. patent for SSB modulation was applied for on

December 1 1915 byJohn Renshaw Carson . Patent 1,449,382, titled [*http://www.google.com/patents?id=2ftWAAAAEBAJ&dq=1,449,382 "Method and Means for Signaling with High Frequency Waves"*] was awarded to Carson onMarch 27 1923 and assigned to AT&T.The U.S. Navy experimented with SSB over its radio circuits prior to World War I. [

*http://dj4br.home.t-link.de/ssb1e.htm The History of Single Sideband Modulation, "Ing. Peter Weber"*] [*http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4051940 IEEE, Early History of Single-Sideband Transmission, "Oswald, A.A."*] SSB first entered commercial service inJanuary 7 ,1927 on thelongwave transatlantic public radiotelephone circuit between New York and London. The high power SSB transmitters were located atRocky Point, New York and Rugby, England. The receivers were in very quiet locations inHoulton, Maine andCupar Scotland. [*http://massis.lcs.mit.edu/archives/history/underseas.cables History Of Undersea Cables (1927)*]SSB was also used over long-distance telephone lines, as part of a technique known as

frequency-division multiplexing . (FDM) was pioneered by telephone companies in the 1930s. This enabled many voice channels to be sent down a single physical circuit. The use of SSB meant that the channels could be spaced (usually) just 4,000 Hz apart, while offering a speech bandwidth of nominally 300–3,400 Hz.Amateur radio operator s began to seriously experiment with SSB afterWorld War II . It has become a de facto standard for long-distance voice radio transmissions since then.**Signal generation****Bandpass filtering**Consider an amplitude-modulated signal, which will have two frequency-shifted copies of the modulating signal (the lower one is frequency-

inverted ) on either side of the remainingcarrier wave . These are known assideband s.One method of producing an SSB signal is to remove one of the sidebands via filtering, leaving only either the

**upper sideband**(**USB**) or less commonly the**lower sideband**(**LSB**). Most often, the carrier is reduced or removed entirely (suppressed), being referred to in full as**single sideband suppressed carrier**(**SSBSC**). Assuming both sidebands are symmetric, no information is lost in the process. Since the final RF amplification is now concentrated in a single sideband, the effective power output is greater than in normal AM (the carrier and redundant sideband account for well over half of the power output of an AM transmitter). Though SSB uses substantially less bandwidth and power, it cannot be demodulated by a simpleenvelope detector like standard AM.**Hartley modulator**An alternate method of generation known as a

**Hartley modulator**, named after R. V. L. Hartley, uses phasing to suppress the unwanted sideband. To generate an SSB signal with this method, two versions of the original signal are generated, mutually 90° out of phase. Each one of these signals is then mixed with carrier waves that are also 90°out of phase with each other. By either adding or subtracting the resulting signals, a lower or upper sideband signal results. A benefit of this approach is to allow an analytical expression for SSB signals, which can be used to understand effects such as synchronous detection of SSB.Shifting the baseband signal 90° out of phase cannot be done simply by delaying it, as it contains a large range of frequencies. In analog circuits, a phasing network is used. The method was popular in the days of

vacuum-tube radios, but later gained a bad reputation due to poorly adjusted commercial implementations. Modulation using this method is again gaining popularity in the homebrew and DSP fields. This method, utilizing theHilbert transform to phase shift the baseband audio, can be done at low cost with digital circuitry.**Weaver modulator**Another variation, the

**Weaver modulator**[*"A Third Method of Generation and Detection of Single-Sideband Signals" D K Weaver Jr. Proc. IRE, Dec. 1956*] , uses only lowpass filters and quadrature mixers, and is a favored method in digital implementations.In Weaver's method, the band of interest is first translated to be centered at zero, conceptually by modulating a complex exponential $exp(jomega\; t)$ with frequency in the middle of the voiceband, but implemented by a quadrature pair of sine and cosine modulators at that frequency (e.g. 2 kHz). This complex signal or pair of real signals is then lowpass filtered to remove the undesired sideband that is not centered at zero. Then, the single-sideband complex signal centered at zero is upconverted to a real signal, by another pair of quadrature mixers, to the desired center frequency.

**Mathematical highlights**Let $s(t),$ be the

baseband waveform to be transmitted. ItsFourier transform , $S(f),$, is Hermitian symmetrical about the $f=0,$ axis, because $s(t),$ is real-valued.Double sideband modulation of $s(t),$ to a radio transmission frequency, $F\_c,$, moves the axis of symmetry to $f=pm\; F\_c$, and the two sides of each axis are calledsidebands .Let $widehat\; s(t),$ represent the

Hilbert transform of $s(t),$**.**Then:$s\_a(t)\; =\; s(t)+jcdot\; widehat\; s(t),$

is a useful mathematical concept, called an

analytic signal . The Fourier transform of $s\_a(t),$ equals $2cdot\; S(f),$, for $f\; >\; 0,$, but it has no negative-frequency components. So it can be modulated to a radio frequency and produce just a**single**sideband.The analytic representation of $cos(2pi\; F\_ccdot\; t),$ is

**:**:$cos(2pi\; F\_ccdot\; t)+jcdot\; sin(2pi\; F\_ccdot\; t)\; =\; e^\{j2pi\; F\_ccdot\; t\}$ (the equality is

Euler's formula )whose Fourier transform is $delta(f-F\_c),$.

When $s\_a(t),$ is modulated (i.e. multiplied) by $e^\{j2pi\; F\_ccdot\; t\},$, all frequency components are shifted by $+F\_c,$, so there are still no negative-frequency components. Therefore, the complex product is an

**analytic representation**of the single sideband signal**:**:$s\_a(t)cdot\; e^\{j2pi\; F\_ccdot\; t\}\; =\; s\_\{ssb\}(t)\; +jcdot\; widehat\; s\_\{ssb\}(t)\; ,$

where $s\_\{ssb\}(t),$ is the real-valued, single sideband waveform. Therefore

**:**:And the "out-of-phase carrier waves" mentioned earlier are evident.

**Lower sideband**$s\_a(t),$ represents the baseband signal's

upper sideband , $s\_\{+\}(t),$. It is also possible, and useful, to convey the baseband information using itslower sideband , $s\_\{-\}(t),$, which is a mirror image about f=0 Hz. By a general property of the Fourier transform, that symmetry means it is the complex conjugate of $s\_\{+\}(t),$**:**:$s\_\{-\}(t)\; =\; s\_\{+\}^*(t)\; =\; s\_a^*(t)\; =\; s(t)-jcdot\; widehat\; s(t),$

Note that

**:**:$s\_\{+\}(t)\; +\; s\_\{-\}(t)\; =\; 2s(t),$

The gain of 2 is a result of defining the analytic signal (one sideband) to have the same total energy as $s(t),$ (both sidebands).

As before, the signal is modulated by $e^\{j2pi\; F\_ccdot\; t\},$. The typical $F\_c,$ is large enough that the translated lower sideband (LSB) has no negative-frequency components. Then the result is another analytic signal, whose real part is the actual transmission.

:

Note that the sum of the two sideband signals is

:$2s(t)cdot\; cos(2pi\; F\_ccdot\; t),$

which is the classic model of suppressed-carrier

double sideband AM.----SSB and VSB can also be regarded mathematically as special cases of analog

quadrature amplitude modulation .**Demodulation**The front end of an SSB receiver is similar to that of an AM or FM receiver, consisting of a

superheterodyne RF front end that produces a frequency-shifted version of the radio frequency (RF) signal within a standardintermediate frequency (IF) band.To recover the original signal from the IF SSB signal, the single sideband must be frequency-shifted down to its original range of

baseband frequencies, by using aproduct detector which mixes it with the output of abeat frequency oscillator (BFO). In other words, it is just another stage of heterodyning.For this to work, the BFO frequency must be accurately adjusted. If the BFO is mis-adjusted, the output signal will be frequency-shifted, making speech sound strange and "

Donald Duck "-like, or unintelligible.Some receivers use acarrier recovery system, which attempts to automatically lock on to the exact frequency.As an example, consider an IF SSB signal centered at frequency $F\_\{if\},$ = 45000 Hz. The baseband frequency it needs to be shifted to is $F\_b,$ = 2000 Hz. The BFO output waveform is $cos(2picdot\; F\_\{bfo\}cdot\; t),$. When the signal is multiplied by (aka '

heterodyne d with') the BFO waveform, it shifts the signal to $(F\_\{if\}+F\_\{bfo\}),$__and__to $|F\_\{if\}-F\_\{bfo\}|,$, which is known as the "beat frequency" or "image frequency". The objective is to choose an $F\_\{bfo\},$ that results in $|F\_\{if\}-F\_\{bfo\}|=F\_b,$ = 2000 Hz. (The unwanted components at $(F\_\{if\}+F\_\{bfo\}),$ can be removed by alowpass filter (such as the humanear ).Note that there are two choices for $F\_\{bfo\},$

**:**43000 Hz and 47000 Hz, a.k.a. "low-side" and "high-side" injection. With high-side injection, the spectral components that were distributed around 45000 Hz will be distributed around 2000 Hz in the reverse order, also known as an "inverted spectrum". That is in fact desirable when the IF spectrum is also inverted, because the BFO inversion restores the proper relationships. One reason for that is when the IF spectrum is the output of an inverting stage in the receiver. Another reason is when the SSB signal is actually a lower sideband, instead of an upper sideband. But if both reasons are true, then the IF spectrum in not inverted, and the non-inverting BFO (43000 Hz) should be used.If $F\_\{bfo\},$ is off by a small amount, then the beat frequency is not exactly $F\_b,$, which can lead to the speech distortion mentioned earlier.

**Suppressed carrier SSB**Suppressed carrier SSB modulation is used by ATSC.DSL modem s implement suppressed carrier SSB modulation as well.**Vestigial sideband (VSB)**A

**vestigial sideband**(inradio communication) is asideband that has been only partly cut off or suppressed. Television broadcasts (inNTSC ,PAL , orSECAM analog video format) use this method if thevideo is transmitted in AM, due to the large bandwidth used. It may also be used in digital transmission, such as theATSC standard ized8-VSB . The Milgo 4400/48modem (circa 1967) used vestigial sideband andphase-shift keying to provide 4800-bit/s transmission over a 1600 Hz channel.The video baseband signal used in TV in countries that use NTSC or ATSC has a bandwidth of 6 MHz. To conserve bandwidth, SSB would be desirable, but the video signal has significant low frequency content (average brightness) and has rectangular synchronising pulses. The compromise is vestigial sideband modulation. In vestigial sideband the full upper sideband of bandwidth W2 = 4 MHz is transmitted, but only W1 = 1.25 MHz of the lower sideband is transmitted, along with a carrier. This effectively makes the system AM at low modulation frequencies and SSB at high modulation frequencies. The absence of the lower sideband components at high frequencies must be compensated for, and this is done by the RF and IF filters.

**ee also***

modulation for other examples of modulation techniques

*Sideband for more general information about a sideband

*ACSSB , amplitude-companded single sideband

*Single-sideband suppressed-carrier transmission **References****General references*** partly from

Federal Standard 1037C in support ofMIL-STD-188 **Further reading**Sgrignoli, G., W. Bretl, R. and Citta. (1995). "VSB modulation used for terrestrial and cable broadcasts." "IEEE Transactions on Consumer Electronics." v. 41, issue 3, p. 367 - 382.

J. Brittain, (1992). "Scanning the past: Ralph V.L. Hartley", "Proc. IEEE", vol.80,p.463.

*Wikimedia Foundation.
2010.*