- Cramér's conjecture
-
In number theory, Cramér's conjecture, formulated by the Swedish mathematician Harald Cramér in 1936,[1] states that
where pn denotes the nth prime number, O is big O notation, and "log" is the natural logarithm. Intuitively, this means the gaps between consecutive primes are always small, and it quantifies asymptotically just how small they can be. This conjecture has not been proven or disproven.
Contents
Heuristic justification
Cramér's conjecture is based on a probabilistic model (essentially a heuristic) of the primes, in which one assumes that the probability that a natural number x is prime is 1/log x. This is known as the Cramér model of the primes. Cramér proved that in this model, the above conjecture holds true with probability one.[1]
Proven results on prime gaps
Cramér also gave much weaker conditional proof that
on the assumption of the Riemann hypothesis.[1]
In the other direction, E. Westzynthius proved in 1931 that prime gaps grow more than logarithmically. That is,[2]
Cramér-Granville conjecture
Daniel Shanks conjectured asymptotic equality of record gaps, a somewhat stronger statement than Cramér's conjecture.[3]
In the random model,
with c = 1.
But this constant, c, may not apply to all the primes, by Maier's theorem. Andrew Granville in 1995 proposed the constant
[4]
Thomas Nicely has calculated many large prime gaps.[5] He measures the quality of fit to Cramér's conjecture by measuring the ratio R of the logarithm of a prime to the square root of the gap; he writes, “For the largest known maximal gaps, R has remained near 1.13,” showing that, at least within the range of his calculation, the Granville refinement of Cramér's conjecture seems to be a good fit to the data.
See also
- Prime number theorem
- Legendre's conjecture and Andrica's conjecture, much weaker but still unproven upper bounds on prime gaps
References
- ^ a b c Cramér, Harald (1936), "On the order of magnitude of the difference between consecutive prime numbers", Acta Arithmetica 2: 23–46.
- ^ Westzynthius, E. (1931), "Über die Verteilung der Zahlen die zu den n ersten Primzahlen teilerfremd sind", Commentationes Physico-Mathematicae Helingsfors 5: 1–37.
- ^ Shanks, Daniel (1964), "On Maximal Gaps between Successive Primes", Mathematics of Computation (American Mathematical Society) 18 (88): 646–651, doi:10.2307/2002951, JSTOR 2002951.
- ^ Granville, A. (1995), "Harald Cramér and the distribution of prime numbers", Scandinavian Actuarial Journal 1: 12–28, http://www.dartmouth.edu/~chance/chance_news/for_chance_news/Riemann/cramer.pdf.
- ^ Nicely, Thomas R. (1999), "New maximal prime gaps and first occurrences", Mathematics of Computation 68 (227): 1311–1315, doi:10.1090/S0025-5718-99-01065-0, MR1627813, http://www.trnicely.net/gaps/gaps.html.
External links
Categories:- Analytic number theory
- Conjectures about prime numbers
Wikimedia Foundation. 2010.
Look at other dictionaries:
Conjecture de Cramér — En mathématiques, la conjecture de Cramér, formulée par le mathématicien suédois Harald Cramér en 1936[1], pronostique que où pn est le n ième nombre premier et désigne le O de Landau ; cette conjecture n est pas démontrée à ce jour … Wikipédia en Français
Conjecture De Cramér — En mathématiques, la conjecture de Cramér, formulée par le mathématicien suédois Harald Cramér en 1936, énonce que où pn est le n ième nombre premier ; cette conjecture n est pas démontrée à ce jour. Cramér a aussi formulé une autre… … Wikipédia en Français
Conjecture de Legendre — La conjecture de Legendre, proposée par Adrien Marie Legendre, énonce qu il existe un nombre premier entre n2 et (n+1)2 pour tout entier n. Cette conjecture est l un des problèmes de Landau, et n a pas été résolue à l heure actuelle (2011).… … Wikipédia en Français
Harald Cramér — Born 25 September 1893(1893 09 25) Stockholm, Sweden … Wikipedia
Andrica's conjecture — (named after Dorin Andrica) is a conjecture regarding the gaps between prime numbers. [ D. Andrica, Note on a conjecture in prime number theory. Studia Univ. Babes Bolyai Math. 31 (1986), no. 4, 44 48. ] The conjecture states that the inequality … Wikipedia
Singmaster's conjecture — In combinatorial number theory, Singmaster s conjecture, named after David Singmaster, says there is a finite upper bound on the multiplicities of entries in Pascal s triangle (other than the number 1, which appears infinitely many times). It is… … Wikipedia
Twin prime conjecture — The twin prime conjecture is a famous unsolved problem in number theory that involves prime numbers. It states:: There are infinitely many primes p such that p + 2 is also prime. Such a pair of prime numbers is called a prime twin. The conjecture … Wikipedia
Harald Cramér — Pour les articles homonymes, voir Cramer. Harald Cramér Harald Cramér, né le 25 septembre 1893 et mort le 5 octobre 1985, e … Wikipédia en Français
Harald Cramer — Harald Cramér Pour les articles homonymes, voir Cramer. Harald Cramér Harald Cramér, né le 25 septembre 1893 et mort … Wikipédia en Français
List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… … Wikipedia