Standard asteroid physical characteristics

For the majority of numbered asteroids, almost nothing is known apart from a few physical parameters. Hundreds of these (See ) have their own Wikipedia page, where the only information is their name and discovery circumstances plus a table of orbital elements and some physical characteristics (often only estimated).

The aim of this page is to provide a reference explaining where the physical data for such generic asteroids comes from.

Please note that due to the various ages of the single asteroid articles, the reference below may not be accurate for all asteroid articles.

Dimensions

Data from the IRAS minor planet surveycite web| url=http://www.psi.edu/pds/resource/imps.html| title= IRAS Minor Planet Survey Supplemental IRAS Minor Planet Survey| accessdate=2006-10-21| publisher=PDS Asteroid/Dust Archive] or the Midcourse Space Experiment (MSX) minor planet surveycite web| url=http://www.psi.edu/pds/resource/mimps.html| title= Midcourse Space Experiment (MSX) Infrared Minor Planet Survey| accessdate=2006-10-21| publisher=PDS Asteroid/Dust Archive] (available at the Planetary Data System Small Bodies Node (PDS)) is the usual source of the diameter.

For many asteroids, lightcurve analysis provides estimates of pole direction and diameter ratios. Pre-1995 estimates collected by Per Magnusson [cite book| url=http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1989aste.conf.1180M&db_key=AST&link_type=ABSTRACT&high=4326fb2cf918106| first=Per| last=Magnusson| chapter=Pole determinations of asteroids| title=Asteroids II| editor=Richard P. Binzel, Tom Gehrels, and Mildred S. Matthews| publisher=University of Arizona Press| location=Tucson| year=1989| pages=1180-1190] are tabulated in the PDS, [cite web| url=http://www.psi.edu/pds/resource/spin.html| title=Asteroid Spin Vectors| accessdate=2006-10-21] with the most reliable data being the "syntheses" labeled in the data tables as "Synth". More recent determinations for several dozens of asteroids are collected at the web page of a Finnish research group in Helsinki which is running a systematic campaign to determine poles and shape models from lightcurves.Modeled asteroids. "rni.helsinki.fi". 2006-06-18.]

These data can be used to obtain a better estimate of dimensions. A body's dimensions are usually given as a tri-axial ellipsoid, the axes of which are listed in decreasing order as "a"×"b"×"c". If we have the diameter ratios "μ" = "a"/"b", "ν" = "b"/"c" from lightcurves, and an IRAS mean diameter d, one sets the geometric mean of the diameters d = (abc)^frac{1}{3},! for consistency, and obtains the three diameters:

:a= d,(mu^2 u)^{frac{1}{3,!

:b= d,left(frac{ u}{mu} ight)^{frac{1}{3,!

:c= frac{d}{( u^2mu)^{frac{1}{3},!

Mass

Barring detailed mass determinations,For example cite web| url=http://www.psi.edu/pds/resource/density.html| title= Asteroid Densities Compilation| accessdate=2006-10-21| publisher=PDS Asteroid/Dust Archive] the mass "M" can be estimated from the diameter and (assumed) density values "ρ" worked out as below.

:M = frac{pi abc ho}{6},!

Such estimates can be indicated as approximate by use of a tilde "~". Besides these "guesstimates", masses can be obtained for the larger asteroids by solving for the perturbations they cause in each others' orbits, [cite web| authorlink=James L. Hilton| first=James L.| last=Hilton| url=http://aa.usno.navy.mil/hilton/asteroid_masses.htm| title=Masses of the Largest Asteroids| year=November 30, 1999| accessdate=2006-06-18] or when the asteroid has an orbiting companion of known orbital radius. The masses of the largest asterois 1 Ceres, 2 Pallas, and 4 Vesta can also be obtained from perturbations of Mars. [cite conference | first=E. V. | last= Pitjeva | authorlink= Elena V. Pitjeva | title= Estimations of masses of the largest asteroids and the main asteroid belt from ranging to planets, Mars orbiters and landers | booktitle= 35th COSPAR Scientific Assembly. Held 18 - 25 July 2004, in Paris, France | pages= 2014 | year= 2004 | url= http://adsabs.harvard.edu/abs/2004cosp.meet.2014P] While these perturbations are tiny, they can be accurately measured from radar ranging data from the Earth to spacecraft on the surface of Mars, such as the Viking landers.

Density

Apart from a few asteroids whose densities have been investigated, one has to resort to enlightened guesswork.

For many asteroids a value of "ρ"~2 g/cm3 has been assumed.

However, a better guess can be obtained by taking into account the asteroid's spectral type. A recent paper gives calculations for the mean densities of C, S, and M class asteroids as 1.38, 2.71, and 5.32 g/cm3. [cite journal| authorlink= Georgij A. Krasinsky | first=G. A. | last= Krasinsky | coauthors=Pitjeva, E. V.; Vasilyev, M. V.; Yagudina, E. I. | url=http://adsabs.harvard.edu/abs/2002Icar..158...98K| title=Hidden Mass in the Asteroid Belt| journal=Icarus| volume=158| issue=1| pages=98–105| month= July| year= 2002| doi=10.1006/icar.2002.6837] (Here "C" included Tholen classes C, D, P, T, B, G, and F, while "S" included Tholen classes S, K, Q, V, R, A, and E). Assuming these values (rather than the present ~2 g/cm3) is a better guess.

urface gravity

pherical body

For a spherical body, the gravitational acceleration at the surface ("g"), is given by

:g_{ m spherical} = frac{GM}{r^2},!

Where "G" = 6.6742e|−11 m3s−2kg−1 is the gravitational constant, "M" is the mass of the body, and "r" its radius.

Irregular body

For irregularly shaped bodies, the surface gravity will differ appreciably with location.

At the outermost point/s, where the distance to the centre of mass is the greatest, the surface gravity is still given by the above formula, slightly modified to use the largest radius r_{ m max}

:g_{ m outer} = frac{GM}{r_{ m max}^2},.!

because all the body's mass is contained within this radius.

At other locations, the calculation becomes more involved because the mass "inside" a given radius to the center contributes normally, while the parts of the body that are more outlying contribute to a lesser degree. The value of "g" at surface points closer to the center of mass is usually somewhat greater that g_{ m outer}.

Centrifugal force

On a rotating body, the apparent weight experienced by an object on the surface is reduced by the centrifugal force, when one is away from the poles. The centrifugal acceleration experienced at a latitude θ is

:g_{ m centrifugal} = -left(frac{2pi}{T} ight)^2 r sin heta

where "T" is the rotation period in seconds, "r" is the equatorial radius, and θ is the latitude. Its magnitude is maximized when one is at the equator, and sinθ=1. The negative sign indicates that it acts in the opposite direction to the gravitational acceleration "g".

The effective acceleration is

: g_{ m effective} = g_{ m gravitational} + g_{ m centrifugal} .

Close binaries

If the body in question is a member of a close binary with components of comparable mass, the effect of the second body may also be non-negligible.

Escape velocity

For surface gravity "g" and radius "r", the escape velocity is::v_e = sqrt{2gr}

Rotation period

Rotation period is usually taken from lightcurve parameters at the PDS. [cite web| url=http://www.psi.edu/pds/resource/lc.html| title= Asteroid Lightcurve Parameters| accessdate=2006-10-21| publisher=PDS Asteroid/Dust Archive]

pectral class

Spectral class is usually taken from the Tholen classification at the PDS. [Asteroid Taxonomies "PDS Asteroid/Dust Archive". 2006-10-21.]

Absolute magnitude

Absolute magnitude is usually given by the IRAS minor planet survey or the MSX minor planet survey (available at the PDS).

Albedo

Usually given by the IRAS minor planet survey or the MSX minor planet survey (available at the PDS). These are "geometric albedos". If there is no IRAS/MSX data a rough average of 0.1 can be used.

urface temperature

Mean

The simplest method which gives sensible results is to assume the asteroid behaves as a greybody in equilibrium with the incident solar radiation. Then, its mean temperature is then obtained by equating the mean incident and radiated heat power. The total incident power is:

:R_{mbox{in = frac{(1-A)L_0pi r^2}{4pi a^2},

where A,! is the asteroid albedo (precisely, the Bond albedo), a,! its semi-major axis, L_0,! is the solar luminosity (i.e. total power output 3.827×1026 W), and r the asteroid's radius. It has been assumed that: the absorptivity is 1-A, the asteroid is spherical, it is on a circular orbit, and that the Sun's energy output is isotropic.

Using a greybody version of the Stefan-Boltzmann law, the radiated power (from the entire spherical surface of the asteroid) is:

:R_{mbox{out = 4pi r^2 epsilon sigma T^4frac{}{},

where sigma,! is the Stefan-Boltzmann constant (5.6704×10-8 W/m²K4), T is the temperature in kelvins, and epsilon,! is the asteroid's infra-red emissivity. Equating R_{mbox{in = R_{mbox{out, one obtains

:T = left ( frac{(1 - A) L_0}{epsilon sigma 16 pi a^2} ight )^{1/4},!

The standard value of epsilon=0.9, estimated from detailed observations of a few of the large asteroids is used.

While this method gives a fairly good estimate of the average surface temperature, the local temperature varies greatly, as is typical for bodies without atmospheres.

Maximum

A rough estimate of the maximum temperature can be obtained by assuming that when the sun is overhead, the surface is in thermal equilibrium with the instantaneous solar radiation. This gives "average" "sub-solar" temperature of

:T_{ss} = sqrt{2}, T approx 1.41, T,

where T is the average temperature calculated as above.

At "perihelion", the radiation is maximised, and

:T_{ss}^{ m max} = sqrt{frac{2}{1-e T,

where e,! is the eccentricity of the orbit.

Temperature measurements and regular temperature variations

Infra-red observations are commonly combined with albedo to measure the temperature more directly. For example L.F.Lim et al [Icarus, Vo. 173, 385 (2005)] does this for 29 asteroids. However, it should be pointed out that these are measurements for "a particular observing day", and that the asteroid's surface temperature will change in a regular way depending on its distance from the Sun. From the Stefan-Boltzmann calculation above,

:T = { m constant} imes frac{1}{sqrt{d,

where d,! is the distance from the Sun on any particular day. If the day of the relevant observations is known, the distance from the Sun on that day can be obtained online from e.g. the NASA orbit calculator,cite web| url=http://neo.jpl.nasa.gov/orbits/| publisher=NASA| title=Orbit Diagrams| accessdate=2006-06-18] and corresponding temperature estimates at perihelion, aphelion, etc. can be obtained from the expression above.

Albedo inaccuracy problem

There is a snag when using these expressions to estimate the temperature of a particular asteroid. The calculation requires the Bond albedo "A" (the proportion of total incoming power reflected, taking into account all directions), while the IRAS and MSX albedo data that is available for asteroids gives only the geometric albedo "p" which characterises only the strength of light reflected back to the source (the Sun).

While these two albedos are correlated, the numerical factor between them depends in a very nontrivial way on the surface properties. Actual measurements of Bond albedo are not forthcoming for the majority of asteroids because they require measurements from high phase angles that can only be acquired by spacecraft that pass near or beyond the asteroid belt. Some complicated modelling of surface and thermal properties can lead to estimates of the Bond albedo given the geometric one, but this far is beyond the scope of a quick estimate for these articles. It can be obtained for some asteroids from scientific publications.

For want of a better alternative for most asteroids, the best that can be done here is to assume that these two albedos are equal, but keep in mind that there is an inherent inaccuracy in the resulting temperature values.

"How large is this inaccuracy?"

A glance at the examples in this table shows that for bodies in the asteroid albedo range, the typical difference between Bond and geometric albedo is 20% or less, with either quantity capable of being larger. Since the calculated temperature varies as (1-"A")1/4, the dependence is fairly weak for typical asteroid "A"≈"p" values of 0.05−0.3.

The typical inaccuracy in calculated temperature "from this source alone" is then found to be about 2%. This translates to an uncertainty of about ±5 K for maximum temperatures.

Other common data

Some other information for large numbers of asteroids can be found at the Planetary Data System Small Bodies Node. [cite web| url=http://www.psi.edu/pds/archive/asteroids.html| title=Asteroid Data Sets| publisher=PDS Asteroid/Dust Archive| accessdate=2006-10-21] Up-to date information on pole orientation of several dozen asteroids is provided by Dr., Doc. Mikko Kaasalainen, and can be used to determine axial tilt.

Another source of useful information is NASA's orbit calculator.

References


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Physical Sciences — ▪ 2009 Introduction Scientists discovered a new family of superconducting materials and obtained unique images of individual hydrogen atoms and of a multiple exoplanet system. Europe completed the Large Hadron Collider, and China and India took… …   Universalium

  • Asteroid — For the arcade video game, see Asteroids (video game). For other uses, see Asteroid (disambiguation). A composite image, to scale, of the asteroids that have been imaged at high resolution. As of 2011 they are, from largest to smallest: 4 Vesta,… …   Wikipedia

  • Mathematics and Physical Sciences — ▪ 2003 Introduction Mathematics       Mathematics in 2002 was marked by two discoveries in number theory. The first may have practical implications; the second satisfied a 150 year old curiosity.       Computer scientist Manindra Agrawal of the… …   Universalium

  • Minor planet — Not to be confused with Dwarf planet. A minor planet is an astronomical object in direct orbit around the Sun that is neither a dominant planet nor a comet, and thus includes the dwarf planets. The orbital categories of minor planets are the… …   Wikipedia

  • 99942 Apophis — Discovery[2] Discovered by Roy A. Tucker David J. Tholen Fabrizio Bernardi Discovery site Kitt Peak …   Wikipedia

  • 243 Ida — Galileo image of 243 Ida. The tiny dot to the right is its moon, Dactyl. Discovery[1] and designation …   Wikipedia

  • astronomy — /euh stron euh mee/, n. the science that deals with the material universe beyond the earth s atmosphere. [1175 1225; ME astronomie ( < AF) < L astronomia < Gk. See ASTRO , NOMY] * * * I Science dealing with the origin, evolution, composition,… …   Universalium

  • Earth — This article is about the planet. For other uses, see Earth (disambiguation). Earth   …   Wikipedia

  • Mars — This article is about the planet. For other uses, see Mars (disambiguation) …   Wikipedia

  • List of Star Wars creatures — This is a list of creatures in the fictional Star Wars universe. In order to be listed here, creatures must be noted in multiple canonical sources. Contents: Top · 0–9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.