﻿

In the mathematical area of bifurcation theory a saddle-node bifurcation or tangential bifurcation is a local bifurcation in which two fixed points (or equilibria) of a dynamical system collide and annihilate each other. The term 'saddle-node bifurcation' is most often used in reference to continuous dynamical systems. In discrete dynamical systems, the same bifurcation is often instead called a fold bifurcation. Another name is blue skies bifurcation in reference to the sudden creation of two fixed points.

If the phase space is one-dimensional, one of the equilibrium points is unstable (the saddle), while the other is stable (the node).

The normal form of a saddle-node bifurcation is:

::$frac\left\{dx\right\}\left\{dt\right\}=r+x^2$

Here $x$ is the state variable and $r$ is the bifurcation parameter.
*If $r<0$ there are two equilibrium points, a stable equilibrium point at $-sqrt\left\{-r\right\}$ and an unstable one at $+sqrt\left\{-r\right\}$.
*At $r=0$ (the bifurcation point) there is exactly one equilibrium point. At this point the fixed point is no longer hyperbolic. In this case the fixed point is called a saddle-node fixed point.
*If $r>0$ there are no equilibrium points.

A saddle-node bifurcation occurs in the consumer equation (see transcritical bifurcation) if the consumption term is changed from $px$ to $p$, that is the consumption rate is constant and not in proportion to resource $x$.

Saddle-node bifurcations may be associated with hysteresis loops and catastrophes.

Example

An example of a saddle-node bifurcation in two-dimensions occurs in the two-dimensional dynamical system:

:$frac \left\{dx\right\} \left\{dt\right\} = alpha - x^2$
:$frac \left\{dy\right\} \left\{dt\right\} = - y.$

As can be seen by the animation obtained by plotting phase portraits by varying the parameter $alpha$,

* When $alpha$ is negative, there are no equilibrium points.
* When $alpha = 0$, there is a saddle-node point.
* When $alpha$ is positive, there are two equilibrium points: that is, one saddle point and one node (either an attractor or a repellor),.

*Pitchfork bifurcation

*Transcritical bifurcation

*Hopf bifurcation

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Bifurcation theory — is the mathematical study of changes in the qualitative or topological structure of a given family. Examples of such families are the integral curves of a family of vector fields or, the solutions of a family of differential equations. Most… …   Wikipedia

• Bogdanov-Takens bifurcation — In bifurcation theory, a field within mathematics, a Bogdanov Takens bifurcation is a well studied example of a bifurcation with co dimension two, meaning that two parameters must be varied for the bifurcation to occur. It is named after R. I.… …   Wikipedia

• Numerical continuation — is a method of computing approximate solutions of a system of parameterized nonlinear equations, The parameter λ is usually a real scalar, and the solution an n vector. For a fixed parameter value λ,, maps Euclidean n space into itself. Often the …   Wikipedia

• List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

• Tipping point (sociology) — In sociology, a tipping point or angle of repose is the event of a previously rare phenomenon becoming rapidly and dramatically more common. The phrase was coined in its sociological use by Morton Grodzins, by analogy with the fact in physics… …   Wikipedia

• Седлоузловая бифуркация — В теории динамических систем, седлоузловая бифуркация локальная бифуркация, при которой пара особых точек (устойчивая и неустойчивая) сливаются в полуустойчивую особую точку (седлоузел), затем исчезающую. Единственная бифуркация, которая… …   Википедия

• Théorie des bifurcations — La théorie des bifurcations, en mathématiques et en physique est l étude des systèmes dynamiques. Une bifurcation intervient lorsqu un petit changement d un paramètre physique produit un changement majeur dans l organisation du système. Sommaire… …   Wikipédia en Français

• Bifurkation (Mathematik) — Eine Bifurkation oder Verzweigung ist eine qualitative Zustandsänderung in nichtlinearen Systemen unter Einfluss eines Parameters μ. Der Begriff der Bifurkation wurde von Henri Poincaré eingeführt. Nichtlineare Systeme, deren Verhalten von einem… …   Deutsch Wikipedia

• Mathematical and theoretical biology — is an interdisciplinary scientific research field with a range of applications in biology, medicine and biotechnology. The field may be referred to as mathematical biology or biomathematics to stress the mathematical side, or as theoretical… …   Wikipedia