# Hexagonal lattice

The

**hexagonal lattice**or**equilateral triangular lattice**is one of the five 2D lattice types.Three nearby points form an equilateral triangle. In images four orientations of such a triangle are by far the most common. They can conveniently be referred to, by viewing the triangle as an arrow, as pointing up, down, to the left, or to the right, although in each case they could also be considered to point into two oblique directions.

Two orientations of an image of the lattice are by far the most common. They can conveniently be referred to as "hexagonal lattice with horizontal rows" (like in the figure below), with triangles pointing up and down, and "hexagonal lattice with vertical rows", with triangles pointing left and right. They differ by an angle of 90°, or equivalently 30°.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

The hexagonal lattice with horizontal rows is a special case of a centered rectangular (i.e. rhombic) grid, with rectangles which are √3 times as high as wide. Of course for the other orientation the rectangles are √3 times as wide as high.

Its

symmetry category iswallpaper group p6m. A pattern with this lattice oftranslational symmetry cannot have more, but may have less symmetry than the lattice itself.For an image of ahoneycomb structure, again two orientations are by far the most common. They can conveniently be referred to as "honeycomb structure with horizontal rows", with hexagons with two vertical sides, and "honeycomb structure with vertical rows", with hexagons with two horizontal sides. They differ by an angle of 90°, or equivalently 30°.A honeycomb structure is in two ways related to a hexagonal lattice:

*the centers of the hexagons of a honeycomb form a hexagonal lattice, with the rows oriented the same

*the vertices of a honeycomb, together with their centers, form a hexagonal lattice, rotated by 30° (or equivalently 90°), and scaled by a factor $frac\{1\}\{3\}\; sqrt\; 3$, relative to the other latticeThe ratio of the number of vertices and the number of hexagons is 2, so together with the centers the ratio is 3, the reciprocal of the square of the scale factor.The term "honeycomb lattice" could mean a corresponding hexagonal lattice, or a structure which is not a lattice in the group sense, but e.g. one in the sense of a

lattice model . A set of points forming the vertices of a honeycomb (without points at the centers) shows the honeycomb structure: * * * * * * * * * * * * * * * * * * * * * * * * *In addition to these points, or instead of them, the sides of the hexagons may be shown; depending on application they may be called "lattice bonds".

With respect to a hexagonal lattice we can distinguish two sets or three directions:

*the directions of the smallest distance between lattice points; let us call them the main translation directions

*the directions of the second smallest distance between lattice points; let us call them the secondary translation directions; these distances are √3 times as large. The set of lattice points can be partitioned into three sets with these larger translation distances. a b c a b c b c a b c a a b c a b cWithin each set of directions the directions differ by an angle of 60°, and between sets by angles of 30° and 90°. For a hexagonal lattice with horizontal rows one of the three directions is horizontal, and for a hexagonal lattice with vertical rows one of the three directions is vertical.

Conversely, for a given lattice we can create a rotated lattice that is √3 times as fine by adding the centers of the equilateral triangles. Since there are twice as many triangles as vertices, this triples the number of vertices.

A pattern with 3- or 6-fold

rotational symmetry has a lattice of 3-fold rotocenters (including possible 6-fold rotocenters) that is this finer lattice relative to the lattice oftranslational symmetry .In the case of 6-fold rotational symmetry the 6-fold centers form a lattice as coarse as the lattice of translational symmetry, i.e. there is one 6-fold center and there are two 3-fold centers per primitive cell.

For reflection axes, there are two possible sets of directions, mentioned above. In the case of 3-fold symmetry either none (p3) or one of the two applies:

*p3m1 with reflection axes along the shortest connections between the rotocenters

*p31m in the main translation directionsIn the 6-fold case either none (p6) or both (p6m) apply.If there are reflection axes in the main translation directions, one of the three sets of rotocenters play a different role than the other two: these reflection axes pass through them. With p6 one set is special because of being 6-fold.

**ee also***

hexagonal tiling

*close-packing

*symmetry combinations

*centered hexagonal number

*Eisenstein integer

*Voronoi diagram

*Loewner's torus**References***Born, M.: On the stability of crystal lattices. IX. Covariant theory of lattice deformations and the stability of some hexagonal lattices. Proc. Cambridge Philos. Soc. 38, (1942). 82--99.

*Wikimedia Foundation.
2010.*

### Look at other dictionaries:

**hexagonal lattice**— heksagoninė gardelė statusas T sritis fizika atitikmenys: angl. hexagonal lattice vok. hexagonales Gitter, n rus. гексагональная решётка, f pranc. réseau hexagonal, m … Fizikos terminų žodynas**hexagonal lattice**— Смотри гексагональная решетка … Энциклопедический словарь по металлургии**Lattice (group)**— A lattice in the Euclidean plane. In mathematics, especially in geometry and group theory, a lattice in Rn is a discrete subgroup of Rn which spans the real vector space Rn. Every lattice in Rn … Wikipedia**Hexagonal tiling**— In geometry, the hexagonal tiling is a regular tiling of the Euclidean plane. It has Schläfli symbol of {6,3} or t{3,6} (as a truncated triangular tiling).Conway calls it a hextille.The internal angle of the hexagon is 120 degrees so three… … Wikipedia**Hexagonal phase**— A hexagonal phase of lyotropic liquid crystal is formed by some amphiphilic molecules when they are mixed with water or another polar solvent. In this phase the amphiphile molecules are aggregated into cylindrical structures of indefinite length… … Wikipedia**Lattice gas automaton**— Lattice gas automata (LGA) or lattice gas cellular automata (LGCA) methods are a series of cellular automata methods used to simulate fluid flows. It was the precursor to the lattice Boltzmann methods. From the LGCA, it is possible to derive the… … Wikipedia**Lattice Boltzmann methods**— (LBM) is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations, the discrete Boltzmann equation is solved to simulate the flow of a Newtonian fluid with collision models such as … Wikipedia**Lattice constant**— The Lattice Constant refers to the constant distance between unit cells in a crystal lattice. Lattices in three dimensions generally have three lattice constants, referred to as a , b , and c . However, in the special case of cubic crystal… … Wikipedia**Hexagonal crystal system**— In crystallography, the hexagonal is one of the 7 crystal system, it contains 7 point groups . It has the same symmetry as a right prism with a hexagonal base. There is only one hexagonal Bravais lattice, which has six atoms per unit… … Wikipedia**hexagonal system**— ▪ crystallography one of the principal categories of structures to which a given crystalline solid can be assigned. Components of crystals in this system are located by reference to four axes three of equal lengths set at 120° to one… … Universalium