Nondeterministic Turing machine

Turing machine(s) Machina Science This article provides insufficient context for those unfamiliar with the subject. Please help improve the article with a good introductory style. (October 2009) In theoretical computer science, a Turing machine is a theoretical machine that is used in thought experiments to examine the abilities and limitations of computers.
In essence, a Turing machine is imagined to be a simple computer that reads and writes symbols one at a time on an endless tape by strictly following a set of rules. It determines what action it should perform next according to its internal "state" and what symbol it currently sees. An example of one of a Turing Machine's rules might thus be: "If you are in state 2 and you see an 'A', change it to a 'B' and move left."
In a deterministic Turing machine, the set of rules prescribes at most one action to be performed for any given situation. A nondeterministic Turing machine (NTM), by contrast, may have a set of rules that prescribes more than one action for a given situation. For example, a nondeterministic Turing machine may have both "If you are in state 2 and you see an 'A', change it to a 'B' and move left" and "If you are in state 2 and you see an 'A', change it to a 'C' and move right" in its rule set.
An ordinary (deterministic) Turing machine (DTM) has a transition function that, for a given state and symbol under the tape head, specifies three things: the symbol to be written to the tape, the direction (left or right) in which the head should move, and the subsequent state of the finite control. For example, an X on the tape in state 3 might make the DTM write a Y on the tape, move the head one position to the right, and switch to state 5.
A nondeterministic Turing machine (NTM) differs in that the state and tape symbol no longer uniquely specify these things; rather, many different actions may apply for the same combination of state and symbol. For example, an X on the tape in state 3 might now allow the NTM to write a Y, move right, and switch to state 5 or to write an X, move left, and stay in state 3.
Contents
Definition
A nondeterministic Turing machine can be formally defined as a 6tuple , where
 Q is a finite set of states
 Σ is a finite set of symbols (the tape alphabet)
 is the initial state
 is the blank symbol
 is the set of accepting states
 is a relation on states and symbols called the transition relation.
The difference with a standard (deterministic) Turing machine is that for those, the transition relation is a function (the transition function).
Configurations and the yields relation on configurations, which describes the possible actions of the Turing machine given any possible contents of the tape, are as for standard Turing machines, except that the yields relation is no longer singlevalued. The notion of string acceptance is unchanged: a nondeterministic Turing machine accepts a string if, when the machine is started on the configuration in which the tape head is on the first character of the string (if any), and the tape is all blank otherwise, at least one of the machine's possible computations from that configuration puts the machine into a state in A. (If the machine is deterministic, the possible computations are the prefixes of a single, possibly infinite, path.)
Resolution of multiple rules
How does the NTM "know" which of these actions it should take? There are two ways of looking at it. One is to say that the machine is the "luckiest possible guesser"; it always picks the transition which eventually leads to an accepting state, if there is such a transition. The other is to imagine that the machine "branches" into many copies, each of which follows one of the possible transitions. Whereas a DTM has a single "computation path" that it follows, an NTM has a "computation tree". If any branch of the tree halts with an "accept" condition, we say that the NTM accepts the input.
Variations
Equivalence with DTMs
In particular, nondeterministic Turing machines are equivalent with deterministic Turing machines. This equivalency refers to what can be computed, as opposed to how quickly.
NTMs effectively include DTMs as special cases, so it is immediately clear that DTMs are not more powerful. It might seem that NTMs are more powerful than DTMs, since they can allow trees of possible computations arising from the same initial configuration, accepting a string if any one branch in the tree accepts it.
However, it is possible to simulate NTMs with DTMs: One approach is to use a DTM of which the configurations represent multiple configurations of the NTM, and the DTM's operation consists of visiting each of them in turn, executing a single step at each visit, and spawning new configurations whenever the transition relation defines multiple continuations.
Another construction^{[1]} simulates NTMs with 3tape DTMs, of which the first tape always holds the original input string, the second is used to simulate a particular computation of the NTM, and the third encodes a path in the NTM's computation tree. The 3tape DTMs are easily simulated with a normal singletape DTM.
In this construction, the resulting DTM effectively performs a breadthfirst search of the NTM's computation tree, visiting all possible computations of the NTM in order of increasing length until it finds an accepting one. Therefore, the length of an accepting computation of the DTM is, in general, exponential in the length of the shortest accepting computation of the NTM. This is considered to be a general property of simulations of NTMs by DTMs; the most famous unresolved question in computer science, the P = NP problem, is related to this issue.
Bounded nondeterminism
An NTM has the property of bounded nondeterminism, i.e., if an NTM always halts on a given input tape T then it halts in a bounded number of steps, and therefore can only have a bounded number of possible configurations.
Comparison with quantum computers
It is a common misconception that quantum computers are NTMs.^{[2]} It is believed but has not been proven that the power of quantum computers is incomparable to that of NTMs.^{[3]} That is, problems likely exist that an NTM could efficiently solve but that a quantum computer cannot. A likely example of problems solvable by NTMs but not by quantum computers in polynomial time are NPcomplete problems.
See also
References
 ^ Elements of the Theory of Computation, by Harry R. Lewis and Christos H. Papadimitriou, PrenticeHall, Englewood Cliffs, New Jersey, 1981, ISBN 0132734176, pp. 206211
 ^ The Orion Quantum Computer AntiHype FAQ, Scott Aaronson.
 ^ Tusarova, Tereza (2004). "Quantum complexity classes". arXiv:cs/0409051..
 Harry R. Lewis, Christos Papadimitriou (1981). Elements of the Theory of Computation (1st ed.). PrenticeHall. ISBN 0132734176. Section 4.6: Nondeterministic Turing machines, pp. 204–211.
 John C. Martin (1997). Introduction to Languages and the Theory of Computation (2nd ed.). McGrawHill. ISBN 0070408459. Section 9.6: Nondeterministic Turing machines, pp. 277–281.
 Christos Papadimitriou (1993). Computational Complexity (1st ed.). AddisonWesley. ISBN 0201530821. Section 2.7: Nondeterministic machines, pp. 45–50.
External links
Categories:
Wikimedia Foundation. 2010.
Look at other dictionaries:
Turing machine equivalents — Turing machine(s) Machina Universal Turing machine Alternating Turing machine Quantum Turing machine Read only Turing machine Read only right moving Turing Machines Probabilistic Turing machine Multi track Turing machine Turing machine… … Wikipedia
Turing machine — For the test of artificial intelligence, see Turing test. For the instrumental rock band, see Turing Machine (band). Turing machine(s) Machina Universal Turing machine Alternating Turing machine Quantum Turing machine Read only Turing machine… … Wikipedia
Probabilistic Turing machine — Turing machine(s) Machina Universal Turing machine Alternating Turing machine Quantum Turing machine Read only Turing machine Read only right moving Turing Machines Probabilistic Turing machine Multi track Turing machine Turing machine… … Wikipedia
Alternating Turing machine — In computational complexity theory, an alternating Turing machine (ATM) is a non deterministic Turing machine (NTM) with a rule for accepting computations that generalizes the rules used in the definition of the complexity classes NP and co NP.… … Wikipedia
Deterministic algorithm — In computer science, a deterministic algorithm is an algorithm which, in informal terms, behaves predictably. Given a particular input, it will always produce the same output, and the underlying machine will always pass through the same sequence… … Wikipedia
Deterministic finitestate machine — An example of a Deterministic Finite Automaton that accepts only binary numbers that are multiples of 3. The state S0 is both the start state and an accept state. In the theory of computation and automata theory, a deterministic finite state… … Wikipedia
Machine de Turing non déterministe — Une machine de Turing non déterministe ressemble à une machine de Turing habituelle, c est à dire déterministe, mais elle diffère d elle en ce qu elle peut avoir, pour un état donné, plusieurs transitions activables. Sommaire 1 Présentation… … Wikipédia en Français
Deterministic pushdown automaton — In automata theory, a pushdown automaton is a finite automaton with an additional stack of symbols; its transitions can take the top symbol on the stack and depend on its value, and they can add new top symbols to the stack. A deterministic… … Wikipedia
Abstract machine — An abstract machine, also called an abstract computer, is a theoretical model of a computer hardware or software system used in Automata theory. Abstraction of computing processes is used in both the computer science and computer engineering… … Wikipedia
Oracle machine — In complexity theory and computability theory, an oracle machine is an abstract machine used to study decision problems. It can be visualized as a Turing machine with a black box, called an oracle, which is able to decide certain decision… … Wikipedia