# Spherical harmonics

In

mathematics , the**spherical harmonics**are the angular portion of anorthogonal set of solutions toLaplace's equation represented in a system ofspherical coordinates . Spherical harmonics are important in many theoretical and practical applications, particularly in the computation of atomicelectron configuration s, representation ofgravitational field s,geoid s, and themagnetic field s of planetary bodies, and characterization of thecosmic microwave background radiation. In 3Dcomputer graphics , spherical harmonics plays a special role in a wide variety of topics including indirect lighting (ambient occlusion, global illumination,precomputed radiance transfer , etc.) and in recognition of 3D shapes.**Introduction**Laplace's equation in spherical coordinates is::$abla^2\; f\; =\; \{1\; over\; r^2\}\{partial\; over\; partial\; r\}left(r^2\; \{partial\; f\; over\; partial\; r\}\; ight)\; +\; \{1\; over\; r^2sin\; heta\}\{partial\; over\; partial\; heta\}left(sin\; heta\; \{partial\; f\; over\; partial\; heta\}\; ight)\; +\; \{1\; over\; r^2sin^2\; heta\}\{partial^2\; f\; over\; partial\; varphi^2\}\; =\; 0$

(see also

del in cylindrical and spherical coordinates ). For "f"("r",θ,φ)="R"("r")Θ(θ)Φ(φ), the angular portion of Laplace's equation satisfies:$\{Phi(varphi)\; over\; sin\; heta\}\{d\; over\; d\; heta\}left(sin\; heta\; \{dTheta\; over\; d\; heta\}\; ight)\; +\; \{Theta(\; heta)\; over\; sin^2\; heta\}\{d^2Phi\; over\; dvarphi^2\}\; +\; l(l+1)Theta(\; heta)Phi(varphi)\; =\; 0.$

Using the technique of

separation of variables , two differential equations result::$frac\{1\}\{Phi(varphi)\}\; frac\{d^2\; Phi(varphi)\}\{dvarphi^2\}\; =\; -m^2$

:$l(l+1)sin\; ^2(\; heta)\; +\; frac\{sin(\; heta)\}\{Theta(\; heta)\}\; frac\{d\}\{d\; heta\}\; left\; [\; sin(\; heta)\; frac\{dTheta\}\{d\; heta\}\; ight\; ]\; =\; m^2$

for some "m" and "l". Hence, the angular solutions can be shown to be a products of

trigonometric function s andassociated Legendre functions ::$Y\_ell^m\; (\; heta,\; varphi\; )\; =\; N\; ,\; e^\{i\; m\; varphi\; \}\; ,\; P\_ell^m\; (cos\{\; heta\}\; ),$

where $Y\_ell^m$ is called a spherical harmonic function of degree $ell$ and order "m", $P\_ell^m$ is an

associated Legendre function , "N" is a normalization constant, and θ and φ represent colatitude and longitude, respectively. The spherical coordinates used in this article are consistent with those used by physicists, but differ from those employed by mathematicians (seespherical coordinates ). In particular, thecolatitude θ, or polar angle, ranges from 0 ≤ θ ≤ π and thelongitude φ, orazimuth , ranges from 0 ≤ φ ≤ 2π. Thus, θ is 0 at the North Pole, π/2 at the Equator, and π at the South Pole.When Laplace's equation is solved on the surface of the sphere, the periodic boundary conditions in φ, as well as regularity conditions at both the north and south poles, ensure that the degree $ell$ and order "m" are integers that satisfy $ell$ ≥ 0 and |"m"| ≤ $ell$. In contrast, if the function "f" were only to have been defined for θ ≤ θ

_{0}, then the resulting spherical cap harmonics would have been defined for integer order, but non-integer degree. The general solution to Laplace's equation is alinear combination of the spherical harmonic functions multiplied by the solutions of "R"("r")::$f(r,\; heta,\; varphi)\; =\; sum\_\{ell=0\}^infty\; sum\_\{m=-ell\}^ell\; r^\{-1-ell\}\; ,\; f\_ell^m\; ,\; Y\_ell^m\; (\; heta,\; varphi\; )\; +\; sum\_\{ell=0\}^infty\; sum\_\{m=-ell\}^ell\; r^ell\; ,\; f\_ell^\{m\text{'}\}\; ,\; Y\_ell^m\; (\; heta,\; varphi\; ),$

where $f\_ell^m$ and $f\_ell^\{m\text{'}\}$ are constants. The terms in the first summation approach zero as "r" goes to infinity, whereas the terms in the second summation approach zero at the origin.

**Orthogonality and normalization**Several different normalizations are in common use for the spherical harmonic functions. In physics and seismology, these functions are generally defined as

:$Y\_ell^m(\; heta\; ,\; varphi\; )\; =\; sqrt$(2ell+1)over 4pi}{(ell-m)!over (ell+m)! , P_ell^m ( cos{ heta} ) , e^{i m varphi }

which are orthonormal

:$int\_\{\; heta=0\}^piint\_\{varphi=0\}^\{2pi\}Y\_ell^m\; ,\; Y\_\{ell\text{'}\}^\{m\text{'}*\}\; ,\; dOmega=delta\_\{ellell\text{'}\},\; delta\_\{mm\text{'}\},$

where δ

_{aa}= 1, δ_{ab}= 0 if a ≠ b, (seeKronecker delta ) and "d"Ω = sinθ "d"φ "d"θ. The disciplines of geodesy and spectral analysis use:$Y\_ell^m(\; heta\; ,\; varphi\; )\; =\; sqrt$(2ell+1) }{(ell-m)!over (ell+m)! , P_ell^m ( cos{ heta} ), e^{i m varphi }

which possess unit power

:$\{1\; over\; 4\; pi\}\; int\_\{\; heta=0\}^piint\_\{varphi=0\}^\{2pi\}Y\_ell^m\; ,\; Y\_\{ell\text{'}\}^\{m\text{'}*\}\; dOmega=delta\_\{ellell\text{'}\},\; delta\_\{mm\text{'}\}.$

The magnetics community, in contrast, uses Schmidt semi-normalized harmonics

:$Y\_ell^m(\; heta\; ,\; varphi\; )\; =\; sqrt$(ell-m)!over (ell+m)! , P_ell^m ( cos{ heta} ) , e^{i m varphi }

which have the normalization

:$int\_\{\; heta=0\}^piint\_\{varphi=0\}^\{2pi\}Y\_ell^m\; ,\; Y\_\{ell\text{'}\}^\{m\text{'}*\}dOmega=\{4\; pi\; over\; (2\; ell\; +\; 1)\}delta\_\{ellell\text{'}\},\; delta\_\{mm\text{'}\}.$

In quantum mechanics this normalization is often used, too, and is there named Racah's normalization after

Giulio Racah .Using the identity (see

associated Legendre functions ):$P\_ell\; ^\{-m\}\; =\; (-1)^m\; frac\{(ell-m)!\}\{(ell+m)!\}\; P\_ell\; ^\{m\}$

it can be shown that all of the above normalized spherical harmonic functions satisfy

:$Y\_ell^\{m*\}\; (\; heta,\; varphi)\; =\; (-1)^m\; Y\_ell^\{-m\}\; (\; heta,\; varphi),$

where the superscript * denotes complex conjugation. Alternatively, this equation follows from the relation of the spherical harmonic functions with the Wigner D-matrix.

**Condon-Shortley phase**One source of confusion with the definition of the spherical harmonic functions concerns a phase factor of (-1)

^{m}, commonly referred to as the Condon-Shortley phase in the quantum mechanical literature. In the quantum mechanics community, it is common practice to either include thisphase factor in the definition of theassociated Legendre functions , or to append it to the definition of the spherical harmonic functions. There is no requirement to use the Condon-Shortley phase in the definition of the spherical harmonic functions, but including it can simplify some quantum mechanical operations, especially the application of raising and lowering operators. The geodesy and magnetics communities never include the Condon-Shortley phase factor in their definitions of the spherical harmonic functions.**pherical harmonics expansion**The spherical harmonics form a complete set of orthonormal functions and thus form a vector space analogous to unit basis vectors. On the unit sphere, any square-integrable function can thus be expanded as a linear combination of these:

$f(\; heta,varphi)=sum\_\{ell=0\}^\{infty\}\; sum\_\{m=-ell\}^ell\; f\_ell^m\; ,\; Y\_ell^m(\; heta,varphi).$

This expansion is exact as long as $ell$ goes to infinity. Truncation errors will arise when limiting the sum over $ell$ to a finite bandwidth $L$. The expansion coefficients can be obtained by multiplying the above equation by the complex conjugate of a spherical harmonic, integrating over the solid angle $Omega!,$, and utilizing the above orthogonality relationships. For the case of orthonormalized harmonics, this gives:

$f\_ell^m=int\_\{Omega\}\; f(\; heta,varphi),\; Y\_ell^\{m*\}(\; heta,varphi)dOmega\; =\; int\_0^\{2pi\}dvarphiint\_0^\{pi\}d\; hetasin\; heta\; f(\; heta,varphi)Y\_ell^\{m*\}\; (\; heta,varphi).$

An alternative set of spherical harmonics for real functions may be obtained by taking the set:

$Y\_\{ell\; m\}\; =\; egin\{cases\}Y\_ell^0\; qquadqquadqquadqquadqquadqquadqquadqquadqquadqquadquadquadmbox\{\; if\; \}\; m=0\backslash \{1oversqrt2\}left(Y\_ell^m+(-1)^m\; ,\; Y\_ell^\{-m\}\; ight)\; =\; sqrt\{2\}\; N\_\{(l,m)\}\; P\_ell^m(cos\; heta)\; cos\; mvarphi\; qquadquadquad\; mbox\{if\; \}\; m0\; \backslash \{1over\; isqrt2\}left(Y\_ell^\{-m\}-(-1)^\{m\},\; Y\_ell^\{m\}\; ight)\; =\; sqrt\{2\}\; N\_\{(l,m)\}\; P\_ell^\{-m\}(cos\; heta)\; sin\; mvarphi\; quadmbox\{\; if\; \}\; m0.end\{cases\}$

where $N\_\{(l,m)\}$ denotes the normalization constant as a function of $l$ and $m$. These functions have the same normalization properties as the complex ones above. In this notation, a real square-integrable function can be expressed as an infinite sum of real spherical harmonics as:

$f(\; heta,\; varphi)\; =\; sum\_\{ell=0\}^infty\; sum\_\{m=-ell\}^ell\; f\_\{lm\}\; ,\; Y\_\{lm\}(\; heta,\; varphi).$

See here for a list of real spherical harmonics up to and including "l = 5". Note, however, that the listed functions differ by the phase (-1)

^{"m"}from the phase given in this article.**pectrum analysis**The total power of a function $f$ is defined in the signal processing literature as the integral of the function squared, divided by the area it spans. Using the orthonormality properties of the real unit-power spherical harmonic functions, it is straightforward to verify that the total power of a function defined on the unit sphere is related to its spectral coefficients by a generalization of

Parseval's theorem ::$frac\{1\}\{4\; ,\; pi\}\; int\_Omega\; f(Omega)^2,\; dOmega\; =\; sum\_\{l=0\}^infty\; S\_\{f!f\}(l),$

where

:$S\_\{f!f\}(l)\; =\; sum\_\{m=-l\}^l\; f\_\{lm\}^2$

is defined as the angular power spectrum. In a similar manner, one can define the cross-power of two functions as

:$frac\{1\}\{4\; ,\; pi\}\; int\_Omega\; f(Omega)\; ,\; g(Omega)\; ,\; dOmega\; =\; sum\_\{l=0\}^infty\; S\_\{fg\}(l),$

where

:$S\_\{fg\}(l)\; =\; sum\_\{m=-l\}^l\; f\_\{lm\}\; g\_\{lm\}$

is defined as the cross-power spectrum. If the functions "f" and "g" have a zero mean (i.e., the spectral coefficients "f"

_{00}and "g"_{00}are zero), then "S_{ff}"("l") and "S_{fg}"("l") represent the contributions to the function's variance and covariance for degree $ell$, respectively. It is common that the (cross-)power spectrum is well approximated by a power law of the form:$S\_\{f!f\}(l)\; =\; C\; ,\; ell^\{eta\}.$

When β = 0, the spectrum is "white" as each degree possesses equal power. When β < 0, the spectrum is termed "red" as there is more power at the low degrees with long wavelengths than higher degrees. Finally, when β > 0, the spectrum is termed "blue".

**Addition theorem**A mathematical result of considerable interest and use is called the "addition theorem" for spherical harmonics. Two vectors

**r**and**r**', with spherical coordinates $(r,\; heta,varphi)$ and $(r\; \text{'},\; heta\; \text{'},varphi\; \text{'})$,respectively, have an angle $,!gamma$ between them given by:$cosgamma=cos\; hetacos\; heta\text{'}+sin\; hetasin\; heta\text{'}cos(varphi-varphi\text{'}).$

The addition theorem expresses a

Legendre polynomial of order $l$ in the angle $,!gamma$ in terms of products of two spherical harmonics with angular coordinates $(\; heta,varphi)$ and $(\; heta\text{'},varphi\text{'})$:$P\_l(\; cos\; gamma\; )\; =\; frac\{4pi\}\{2l+1\}sum\_\{m=-l\}^l\; Y\_\{lm\}^*(\; heta\text{'},varphi\text{'})\; ,\; Y\_\{lm\}(\; heta,varphi).$

This expression is valid for both real and complex harmonics. However, it should be emphasized that the quoted form above is valid only for the orthonormalized spherical harmonics. For unit power harmonics it is only necessary to remove the factor of $4\; pi$.

**Visualization of the spherical harmonics**The spherical harmonics are easily visualized by counting the number of zero crossings they possess in both the latitudinal and longitudinal directions. For the latitudinal direction, the associated Legendre functions possess $l-|m|$ zeros, whereas for the longitudinal direction, the trigonomentric $sin$ and $cos$ functions possess $2|m|$ zeros.

When the spherical harmonic order $m$ is zero, the spherical harmonic functions do not depend upon longitude, and are referred to as

**zonal**. When $l=|m|$, there are no zero crossings in latitude, and the functions are referred to as**sectoral**. For the other cases, the functions checker the sphere, and they are referred to as**tesseral**.**First few spherical harmonics**Analytic expressions for the first few orthonormalized spherical harmonics that use the Condon-Shortley phase convention:

:$Y\_\{0\}^\{0\}(\; heta,varphi)=\{1over\; 2\}sqrt\{1over\; pi\}$

:$Y\_\{1\}^\{-1\}(\; heta,varphi)=\{1over\; 2\}sqrt\{3over\; 2pi\}\; ,\; sin\; heta\; ,\; e^\{-ivarphi\}$:$Y\_\{1\}^\{0\}(\; heta,varphi)=\{1over\; 2\}sqrt\{3over\; pi\},\; cos\; heta$:$Y\_\{1\}^\{1\}(\; heta,varphi)=\{-1over\; 2\}sqrt\{3over\; 2pi\},\; sin\; heta,\; e^\{ivarphi\}$

:$Y\_\{2\}^\{-2\}(\; heta,varphi)=\{1over\; 4\}sqrt\{15over\; 2pi\}\; ,\; sin^\{2\}\; heta\; ,\; e^\{-2ivarphi\}$:$Y\_\{2\}^\{-1\}(\; heta,varphi)=\{1over\; 2\}sqrt\{15over\; 2pi\},\; sin\; heta,\; cos\; heta,\; e^\{-ivarphi\}$:$Y\_\{2\}^\{0\}(\; heta,varphi)=\{1over\; 4\}sqrt\{5over\; pi\},\; (3cos^\{2\}\; heta-1)$:$Y\_\{2\}^\{1\}(\; heta,varphi)=\{-1over\; 2\}sqrt\{15over\; 2pi\},\; sin\; heta,cos\; heta,\; e^\{ivarphi\}$:$Y\_\{2\}^\{2\}(\; heta,varphi)=\{1over\; 4\}sqrt\{15over\; 2pi\},\; sin^\{2\}\; heta\; ,\; e^\{2ivarphi\}$

:$Y\_\{3\}^\{0\}(\; heta,varphi)=\{1over\; 4\}sqrt\{7over\; pi\},\; (5cos^\{3\}\; heta-3cos\; heta)$

:

**More spherical harmonics up to Y**_{10}**Generalizations**The spherical harmonics map can be seen as representations of the symmetry group of rotations around a point (

SO(3) ) and its double-coverSU(2) . As such they capture the symmetry of the two-dimensionalsphere (ortwo-sphere ). Each set of spherical harmonics with a given value for the l-parameter map onto a different irreducible representation ofSO(3) .In addition, the

two-sphere is equivalent to theRiemann sphere . The complete set of symmetries of the Riemann sphere are described by theMöbius transformation group PSL(2,C), which is isomorphic as a real Lie group to theLorentz group . The analog of the spherical harmonics for the Lorentz group are given by thehypergeometric series ; indeed, the spherical harmonics can be re-expressed in terms of the hypergeometric series, as SO(3) is asubgroup of PSL(2,C).More generally, hypergeometric series can be generalized to describe the symmetries of any

symmetric space ; in particular, hypergeometric series can be developed for anyLie group [*N. Vilenkin, "Special Functions and the Theory of Group Representations", Am. Math. Soc. Transl.,vol. 22, (1968).*] [*J. D. Talman, "Special Functions, A Group Theoretic Approach", (based on lectures by E.P. Wigner), W. A. Benjamin, New York (1968).*] [*W. Miller, "Symmetry and Separation of Variables," Addison-Wesley, Reading (1977).*] [*A. Wawrzyńczyk, "Group Representations and Special Functions", Polish Scientific Publishers.Warszawa (1984).*]**later integrals or coefficients**John C. Slater defined the integral of three spherical harmonics as a coefficient $c$ [*John C. Slater, Quantum Theory of Atomic Structure, McGraw-Hill (New York, 1960), Volume I*]:$c^k(l,m,l,\text{'}m\text{'})=int\; d^2Omega\; Y\_l^m(Omega)^*\; Y\_\{l\text{'}\}^\{m\text{'}\}(Omega)\; Y\_k^\{m-m\text{'}\}(Omega)$

These integrals are useful and necessary when doing atomic calculations of the

Hartree-Fock variety where matrix elements of the Coulomb operator are needed. For an explicit formula, one can use Gaunt's formula under the section onAssociated Legendre functions .Note that the product of two spherical harmonics can be written in terms of these coefficients. By expanding such a product over a spherical harmonic basis, as outlined earlier in this article,:$Y\_l^m\; Y\_\{l\text{\'}\}^\{m\text{\'}\}\; =\; sum\_\{l",m"\}\; hat\{A\}(l,m,l\text{\'},m\text{\'},l",m")\; Y\_\{l"\}^\{m"\},$one may then multiply by $Y*$ and integrate, using the conjugate property and being careful with phases and normalisations::$int\; Y\_l^m\; Y\_\{l\text{'}\}^\{m\text{'}\}\; Y\_\{L\}^\{-M\}\; =\; hat\{A\}(l,m,l\text{'},m\text{'},L,M)\; =\; c^L(l,m,l\text{'},m\text{'})$

These coefficient obey a number of identities. They include

::$egin\{align\}c^k(l,m,l\text{'},m\text{'})\; =c^k(l,-m,l\text{'},-m\text{'})\backslash =(-1)^\{m-m\text{'}\}c^k(l\text{'},m\text{'},l,m)\backslash =(-1)^\{m-m\text{'}\}sqrt\{frac\{2l+1\}\{2k+1c^l(l\text{'},m\text{'},k,m\text{'}-m)\backslash \; =\; (-1)^\{m\text{'}\}sqrt\{frac\{2l\text{'}+1\}\{2k+1c^\{l\text{'}\}(k,m-m\text{'},l,m)\backslash sum\_\{m=-l\}^\{l\}\; c^k(l,m,l,m)\; =\; (2l+1)delta\_\{k,0\}\backslash sum\_\{m=-l\}^l\; sum\_\{m\text{'}=-l\text{'}\}^\{l\text{'}\}\; c^k(l,m,l\text{'},m\text{'})^2\; =\; sqrt\{(2l+1)(2l\text{'}+1)\}cdot\; c^k(l,0,l\text{'},0)\backslash sum\_\{m=-l\}^l\; c^k(l,m,l\text{'},m\text{'})^2\; =\; sqrt\{frac\{2l+1\}\{2l\text{'}+1cdot\; c^k(l,0,l\text{'},0)\backslash sum\_\{m=-l\}^l\; c^k(l,m,l\text{'},m\text{'})c^k(l,m,\; ilde\; l,m\text{'})\; =\; delta\_\{l\text{'},\; ilde\; l\}cdotsqrt\{frac\{2l+1\}\{2l\text{'}+1cdot\; c^k(l,0,l\text{'},0)\backslash sum\_m\; c^k(l,m+r,l\text{'},m)\; c^k(l,m+r,\; ilde\; l,m)\; =\; delta\_\{l,\; ilde\; l\}\; cdot\; frac\{sqrt\{(2l+1)(2l\text{'}+1)\{2k+1\}cdot\; c^k(l,0,l\text{'},0)\backslash sum\_m\; c^k(l,m+r,l\text{'},m)c^q(l,m+r,l\text{'},m)\; =\; delta\_\{k,q\}cdotfrac\{sqrt\{(2l+1)(2l\text{'}+1)\{2k+1\}cdot\; c^k(l,0,l\text{'},0)end\{align\}$

**ee also***

Clebsch-Gordan coefficients

*Harmonic function

*Rotation group

*Sturm-Liouville theory

*Atomic orbital

*Solid harmonics

*Vector spherical harmonics

*Table of spherical harmonics **References****Cited references****General references**

* E.W. Hobson, "The Theory of Spherical and Ellipsoidal Harmonics", (1955) Chelsea Pub. Co., ISBN 978-0828401043.

* T.M. MacRobert, "Spherical harmonics: An elementary treatise on harmonic functions, with applications", (1967) Pergamon Press, 349p.

* C. Müller, "Spherical Harmonics", (1966) Springer, Lecture Notes in Mathematics, Vol. 17, ISBN 978-3-540-03600-5.

* A.R. Edmonds, "Angular Momentum in Quantum Mechanics", (1957) Princeton University Press, ISBN 0-691-07912-9.

* E. U. Condon and G. H. Shortley, "The Theory of Atomic Spectra", (1970) Cambridge at the University Press, ISBN 0-521-09209-4, "See chapter 3".

* J.D. Jackson, "Classical Electrodynamics", ISBN 0-471-30932-X

* Albert Messiah, "Quantum Mechanics", volume II. (2000) Dover. ISBN 0-486-40924-4.

* D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii "Quantum Theory of Angular Momentum",(1988) World Scientific Publishing Co., Singapore, ISBN 9971-5-0107-4**Web resources**

* [*http://mathworld.wolfram.com/SphericalHarmonic.html Spherical harmonics on Mathworld*]

* [*http://www.ipgp.jussieu.fr/~wieczor/SH/SH.html Spherical Harmonic Models of Planetary Topography*]

* [*http://adomas.org/shg/ Spherical harmonics generator in OpenGL*]

* [*http://www.paulsprojects.net/opengl/sh/sh.html OpenGL Spherical harmonics demo*]**oftware*** [

*http://www.ipgp.jussieu.fr/~wieczor/SHTOOLS/SHTOOLS.html SHTOOLS: Fortran 95 software archive*]

* [*http://healpix.jpl.nasa.gov/ HEALPIX: Fortran 90 and C++ software archive*]

* [*http://www.cisl.ucar.edu/css/software/spherepack/ SpherePack: Fortran 77 software archive*]

* [*http://www.cs.dartmouth.edu/~geelong/sphere/ SpharmonicKit: C software archive*]

* [*http://geoweb.princeton.edu/people/simons/software.html Frederik J Simons: Matlab software archive*]

* [*http://www-user.tu-chemnitz.de/~potts/nfft/ NFFT: C subroutine library (fast spherical Fourier transform for arbitrary nodes)*]

* [*http://www.spice-rtn.org/library/software/shansyn Shansyn: spherical harmonics package for GMT/netcdf grd files*]

* [*http://www.embl-heidelberg.de/~khairy/links.html SHAPE: Spherical HArmonic Parameterization Explorer*]**External links***Interactive calculator of spherical harmonics on [

*http://wm.eecs.umich.edu:8180/webMathematica/tcarmon/sh2.jsp Tal Carmon's Research Homepage*]

*Spherical harmonics applied to Acoustic Field analysis on [*http://www.trinnov.com/research.php#concept Trinnov Audio's research page*]

* [*http://demonstrations.wolfram.com/SphericalHarmonics/ Spherical Harmonics*] byStephen Wolfram and [*http://demonstrations.wolfram.com/NodalDomainsOfSphericalHarmonics/ Nodal Domains of Spherical Harmonics*] by Michael Trott,The Wolfram Demonstrations Project

* [*http://mysite.du.edu/~jcalvert/math/harmonic/harmonic.htm An accessible introduction to spherical harmonics (by J. B. Calvert)*]

* [*http://en.citizendium.org/wiki/Spherical_harmonics Spherical harmonics entry at Citizendium*]

*Wikimedia Foundation.
2010.*

### Look at other dictionaries:

**spherical harmonics**— noun The solutions to Laplaces equation using spherical coordinates … Wiktionary**Spin-weighted spherical harmonics**— are generalizations of the standard spherical harmonics and like the usual spherical harmonics are complex functions on the sphere. These harmonics are typically denoted by {} sY {lm}, where s is the spin weight , and l and m are akin to the… … Wikipedia**Vector spherical harmonics**— In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for the use with vector fields.DefinitionSeveral conventions have been used to define the VSH [R.G. Barrera, G.A. Estévez and J. Giraldo, Vector… … Wikipedia**Table of spherical harmonics**— This is a table of orthonormalized spherical harmonics that employ the Condon Shortley phase up to degree l=10. Some of these formulas give the Cartesian version. This assumes x, y, z, and r are related to heta, and varphi, through the usual… … Wikipedia**Spherical multipole moments**— are the coefficients in a series expansionof a potential that varies inversely with the distance R to a source, i.e., as frac{1}{R}. Examples of such potentials are the electric potential, the magnetic potential and the gravitational… … Wikipedia**Spherical harmonic lighting**— Spherical harmonic (SH) lighting is a family of real time rendering techniques that can produce highly realistic shading and shadowing with comparatively little overhead. All SH lighting techniques involve replacing parts of standard lighting… … Wikipedia**Spherical function**— can refer to* Spherical harmonics *Zonal spherical function … Wikipedia**Spherical coordinate system**— In mathematics, the spherical coordinate system is a coordinate system for representing geometric figures in three dimensions using three coordinates: the radial distance of a point from a fixed origin, the zenith angle from the positive z axis… … Wikipedia**Solid harmonics**— In physics and mathematics, the solid harmonics are solutions of the Laplace equation in spherical polar coordinates. There are two kinds: the regular solid harmonics R^m ell(mathbf{r}), which vanish at the origin and the irregular solid… … Wikipedia**Cylindrical harmonics**— In mathematics, the cylindrical harmonics are a set of linearly independent solutions to Laplace s differential equation, , expressed in cylindrical coordinates, ρ (radial coordinate), φ (polar angle), and z (height). Each function Vn(k) is the… … Wikipedia