# Spectral density

In

statistical signal processing andphysics , the**spectral density**,**power spectral density**(**PSD**), or**energy spectral density**(**ESD**), is a positive real function of a frequency variable associated with a stationarystochastic process , or a deterministic function of time, which has dimensions of power per Hz, or energy per Hz. It is often called simply the "spectrum " of the signal. Intuitively, the spectral density captures the frequency content of astochastic process and helps identify periodicities.**Explanation**In

physics , the signal is usually a wave, such as anelectromagnetic wave ,random vibration , or an acoustic wave. The spectral density of the wave, when multiplied by an appropriate factor, will give the power carried by the wave, per unit frequency, known as the**power spectral density**(PSD) of the signal. Power spectral density is commonly expressed inwatt s perhertz (W/Hz) [*cite book | title = VSAT Networks | author = Gérard Maral | publisher = John Wiley and Sons | year = 2003 | ibsn = 0470866845 | url = http://books.google.com/books?id=CMx5HQ1Mr_UC&pg=PR20&dq=%22power+spectral+density%22+W/Hz&lr=&as_brr=0&ei=VYwvSImyA4L4sQPxxJXzAg&sig=-bko0DhmJwzISN6PcHszF9E3qUE#PPR20,M1*] ordBm /Hz.For

voltage signals, it is customary to use units of V^{2}Hz^{-1}for PSD, and V^{2}sHz^{-1}for ESD [*cite book | title = Fundamentals of Noise and Vibration Analysis for Engineers | author = Michael Peter Nortonand Denis G. Karczub | publisher = Cambridge University Press | year = 2003 | isbn = 0521499135 | url = http://books.google.com/books?id=jDeRCSqtev4C&pg=PA352&dq=%22power+spectral+density%22+%22energy+spectral+density%22&lr=&as_brr=3&ei=i3IvSLL6H4-KsgPfze13&sig=RJgA8uGocYf5d6mC6rKKS-X_2bc*] ordBμV /Hz.Although it is not necessary to assign physical dimensions to the signal or its argument, in the following discussion the terms used will assume that the signal varies in time.

**Definition****Energy spectral density**The

**energy spectral density**describes how the energy (or variance) of a signal or atime series is distributed with frequency. If $f(t)$ is a finite-energy (square integrable) signal, the spectral density $Phi(omega)$ of the signal is the square of the magnitude of thecontinuous Fourier transform of the signal (here energy is taken as the integral of the square of a signal, which is the same as physical energy if the signal is a voltage applied to a 1-ohm load).:$Phi(omega)=left|frac\{1\}\{sqrt\{2piint\_\{-infty\}^infty\; f(t)e^\{-iomega\; t\},dt\; ight|^2\; =\; frac\{F(omega)F^*(omega)\}\{2pi\}$

where $omega$ is the

angular frequency ($2pi$ times the cycle frequency) and $F(omega)$ is thecontinuous Fourier transform of $f(t)$, and $F^*(omega)$ is its complex conjugate.If the signal is discrete with values $f\_n$, over an infinite number of elements, we still have an energy spectral density:

:$Phi(omega)=left|frac\{1\}\{sqrt\{2pisum\_\{n=-infty\}^infty\; f\_n\; e^\{-iomega\; n\}\; ight|^2=frac\{F(omega)F^*(omega)\}\{2pi\}$

where $F(omega)$ is the

discrete-time Fourier transform of $f\_n$.If the number of defined values is finite, the sequence does not have an energy spectral density "per se", but the sequence can be treated as periodic, using a

discrete Fourier transform to make a discrete spectrum, or it can be extended with zeros and a spectral density can be computed as in the infinite-sequence case.The continuous and discrete spectral densities are often denoted with the same symbols, as above, though their dimensions and units differ; the continuous case has a time-squared factor that the discrete case does not have. They can be made to have equal dimensions and units by measuring time in units of sample intervals or by scaling the discrete case to the desired time units.

As is always the case, the multiplicative factor of $1/2pi$ is not absolute, but rather depends on the particular normalizing constants used in the definition of the various Fourier transforms.

**Power spectral density**The above definitions of energy spectral density require that the Fourier transforms of the signals exist, that is, that the signals are square-integrable or square-summable. An often more useful alternative is the

**power spectral density**(PSD), which describes how the power of a signal or time series is distributed with frequency. Here power can be the actual physical power, or more often, for convenience with abstract signals, can be defined as the squared value of the signal, that is, as the actual power if the signal was a voltage applied to a 1-ohm load. This instantaneous power (the mean or expected value of which is the average power) is then given by:$P\; =\; s(t)^2\; .$

Since a signal with nonzero average power is not square integrable, the Fourier transforms do not exist in this case. Fortunately, the

Wiener–Khinchin theorem provides a simple alternative. The PSD is the Fourier transform of theautocorrelation function , $R(\; au)$, of the signal if the signal can be treated as a wide-sense stationary random process. [*cite book | title = Echo Signal Processing | author = Dennis Ward Ricker | publisher = Springer | year = 2003 | ibsn = 140207395X | url = http://books.google.com/books?id=NF2Tmty9nugC&pg=PA23&dq=%22power+spectral+density%22+%22energy+spectral+density%22&lr=&as_brr=3&ei=HZMvSPSWFZyStwPWsfyBAw&sig=1ZZcHwxXkErvNXtAHv21ijTXoP8#PPA23,M1*]This results in the formula,

$S(f)=int\_\{-infty\}^\{infty\},R(\; au),e^\{-2,pi,i,f,\; au\},d\; au.$

The power of the signal in a given frequency band can be calculated by integrating over positive and negative frequencies,

$P=int\_\{F\_1\}^\{F\_2\},S(f),d\; f\; +\; int\_\{-F\_2\}^\{-F\_1\},S(f),d\; f.$

The power spectral density of a signal exists if and only if the signal is a wide-sense stationary process. If the signal is not stationary, then the autocorrelation function must be a function of two variables, so no PSD exists, but similar techniques may be used to estimate a time-varying spectral density.

**Estimation**The goal of spectral density estimation is to estimate the spectral density of a

random signal from a sequence of time samples. Depending on what is known about the signal, estimation techniques can involve parametric or non-parametric techniques, and may be based on time-domain or frequency-domain analysis. For example, a common parametric technique involves fitting the observations to an autoregressive model. A common non-parametric technique is theperiodogram .**Properties*** The spectral density of $f(t)$ and the

autocorrelation of $f(t)$ form a Fourier transform pair (for PSD versus ESD, different definitions of autocorrelation function are used).* The spectral density is usually estimated using Fourier transform techniques, but other techniques such as

Welch's method and the maximum entropy method can also be used.* One of the results of Fourier analysis is

Parseval's theorem which states that the area under the energy spectral density curve is equal to the area under the square of the magnitude of the signal, the total energy:::$int\_\{-infty\}^infty\; left|\; f(t)\; ight|^2,\; dt\; =\; int\_\{-infty\}^infty\; Phi(omega),\; domega.$

:The above theorem holds true in the discrete cases as well. A similar result holds for the total power in a power spectral density being equal to the corresponding mean total signal power, which is the autocorrelation function at zero lag.

**Related concepts*** Most "frequency" graphs really display only the spectral density. Sometimes the complete frequency spectrum is graphed in 2 parts, "amplitude" versus frequency (which is the spectral density) and "phase" versus frequency (which contains the rest of the information from the frequency spectrum). The signal $f(t)$ can be recovered from complete

frequency spectrum . Note that the signal $f(t)$ cannot be recovered from the spectral density part alone — the "temporal information" is lost.* The

spectral centroid of a signal is the midpoint of its spectral density function, i.e. the frequency that divides the distribution into two equal parts.* The spectral edge frequency of a signal is an extension of the previous concept to any proportion instead of two equal parts.

* Spectral density is a function of frequency, not a function of time. However, the spectral density of small "windows" of a longer signal may be calculated, and plotted versus time associated with the window. Such a graph is called a "

spectrogram ". This is the basis of a number of spectral analysis techniques such as theshort-time Fourier transform andwavelets .**Applications****Electronics engineering**The concept and use of the power spectrum of a signal is fundamental in electronic engineering, especially in electronic communication systems (radio & microwave communications, radars, and related systems). Much effort has been made and millions of dollars spent on developing and producing electronic instruments called "

spectrum analyzer s" for aiding electronics engineers, technologists, and technicians in observing and measuring the power spectrum of electronic signals. The cost of a spectrum analyzer varies according to its bandwidth and its accuracy. The top quality instruments cost over $100,000.The spectrum analyzer measures essentially the magnitude of the

short-time Fourier transform (STFT) of an input signal. If the signal being analyzed is stationary, the STFT is a good smoothed estimate of its power spectral density.**Colorimetry**The spectrum of a

light source is a measure of the power carried by each frequency or "color" in a light source. The light spectrum is usually measured at points (often 31) along thevisible spectrum , in wavelength space instead of frequency space, which makes it not strictly a spectral density. Some spectrophotometers can measure increments as fine as 1 or 2nanometer s. Values are used to calculate other specifications and then plotted to demonstrate the spectral attributes of the source. This can be a helpful tool in analyzing thecolor characteristics of a particular source.**ee also***

Spectral efficiency

*Noise spectral density

*Colors of noise

*Spectral leakage

*Window function

*Frequency domain

*Frequency spectrum

*Bispectrum

*Spectral density estimation **References**

*Wikimedia Foundation.
2010.*

### Look at other dictionaries:

**spectral density**— spektrinis tankis statusas T sritis automatika atitikmenys: angl. spectral density vok. Spektraldichte, f rus. спектральная плотность, f pranc. densité spectrale, f … Automatikos terminų žodynas**spectral density**— spektrinis tankis statusas T sritis Standartizacija ir metrologija apibrėžtis Pasirinktosios spektro dalies, išreikštos energija, bangos ilgiu ar dažniu, vienetinio intervalo vidutinė nagrinėjamojo dydžio vertė. atitikmenys: angl. spectral… … Penkiakalbis aiškinamasis metrologijos terminų žodynas**spectral density**— spektrinis tankis statusas T sritis fizika atitikmenys: angl. spectral density vok. Spektraldichte, f rus. спектральная плотность, f pranc. densité spectrale, f … Fizikos terminų žodynas**Spectral density estimation**— In statistical signal processing, the goal of spectral density estimation is to estimate the spectral density (also known as the power spectrum) of a random signal from a sequence of time samples of the signal. Intuitively speaking, the spectral… … Wikipedia**spectral density of radiant energy**— spektrinis spinduliuotės energijos tankis statusas T sritis Standartizacija ir metrologija apibrėžtis Pasirinktosios spektro dalies vienetinio dažnio ar bangos ilgio intervalo vidutinė spinduliuotės energijos vertė. atitikmenys: angl. spectral… … Penkiakalbis aiškinamasis metrologijos terminų žodynas**spectral density of radiant energy**— spektrinis spinduliuotės energijos tankis statusas T sritis Standartizacija ir metrologija apibrėžtis Spinduliuotės energijos tankis be galo mažame bangų ilgių intervale, padalytas iš to intervalo. atitikmenys: angl. spectral concentration of… … Penkiakalbis aiškinamasis metrologijos terminų žodynas**spectral density of radiant energy**— spektrinis spinduliuotės energijos tankis statusas T sritis fizika atitikmenys: angl. spectral concentration of radiant energy density; spectral density of radiant energy; spectral radiant energy density vok. spektrale Strahlungsdichte, f;… … Fizikos terminų žodynas**spectral density function**— spektrinio tankio funkcija statusas T sritis automatika atitikmenys: angl. spectral density function vok. spektrale Leistungsdichtefunktion, f rus. функция спектральной плотности, f pranc. fonction de densité spectrale, f … Automatikos terminų žodynas**spectral density of fluctuations**— spektrinis fliuktuacijų tankis statusas T sritis Standartizacija ir metrologija apibrėžtis Dydžio fliuktuacijų dispersija vienetiniame dažnių arba energijos tarpe. Matavimo vienetas: [dydis]²/Hz. atitikmenys: angl. spectral density of… … Penkiakalbis aiškinamasis metrologijos terminų žodynas**spectral density of current fluctuations**— spektrinis srovės fliuktuacijų tankis statusas T sritis Standartizacija ir metrologija apibrėžtis Srovės stiprio fliuktuacijų dispersija vienetiniame dažnių arba energijos tarpe. Matavimo vienetas: A²/Hz. atitikmenys: angl. spectral density of… … Penkiakalbis aiškinamasis metrologijos terminų žodynas