Magnetic complex reluctance

Magnetic Circuits

Conventional Magnetic Circuits

Phasor Magnetic Circuits
  • Complex reluctance Zμ

Related Concepts

Gyrator-capacitor model variables
This box: view · talk · edit

Magnetic complex reluctance (SI Unit: H−1) is a measurement of a passive magnetic circuit (or element within that circuit) dependent on sinusoidal magnetomotive force (SI Unit: At·Wb−1) and sinusoidal magnetic flux (SI Unit: T·m2), and this is determined by deriving the ratio of their complex effective amplitudes.[Ref. 1-3]

Z_\mu = \frac{\dot N}{\dot \Phi} = \frac{\dot {N}_m}{\dot {\Phi}_m} = z_\mu e^{j\phi}

As seen above, magnetic complex reluctance is a phasor represented as uppercase Z mu where:

\dot N and \dot {N}_m represent the magnetomotive force (complex effective amplitude)
\dot \Phi and \dot {\Phi}_m represent the magnetic flux (complex effective amplitude)
zμ, lowercase z mu, is the real part of magnetic complex reluctance

The "lossless" magnetic reluctance, lowercase z mu, is equal to the absolute value (modulus) of the magnetic complex reluctance. The argument distinguishing the "lossy" magnetic complex reluctance from the "lossless" magnetic reluctance is equal to the natural number e raised to a power equal to:

j\phi = j\left(\beta - \alpha\right)

Where:

  • j is the imaginary number
  • β is the phase of the magnetomotive force
  • α is the phase of the magnetic flux
  • ϕ is the phase difference

The "lossy" magnetic complex reluctance represents a magnetic circuit element's resistance to not only magnetic flux but also to changes in magnetic flux. When applied to harmonic regimes, this formality is similar to Ohm's Law in ideal AC circuits. In magnetic circuits, magnetic complex reluctance equal to:

Z_\mu = \frac{1}{\dot {\mu} \mu_0}\frac{l}{S}

Where:

References

  • Bull B. K. The Principles of Theory and Calculation of the Magnetic Circuits. – M.-L.: Energy, 1964, 464 p. (In Russian).
  • Arkadiew W. Eine Theorie des elektromagnetischen Feldes in den ferromagnetischen Metallen. – Phys. Zs., H. 14, No 19, 1913, S. 928-934.
  • Küpfmüller K. Einführung in die theoretische Elektrotechnik, Springer-Verlag, 1959.

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Dielectric complex reluctance — is a scalar measurement of a passive dielectric circuit (or element within that circuit) dependent on sinusoidal voltage and sinusoidal electric induction flux, and this is determined by deriving the ratio of their complex effective amplitudes.… …   Wikipedia

  • Magnetic circuit — Magnetic Circuits Conventional Magnetic Circuits Magnetomotive force Magnetic flux Φ Magnetic reluctance Phasor Magnetic Circuits Complex reluctance Zμ …   Wikipedia

  • Magnetic reluctance — Magnetic reluctance, or magnetic resistance, is a concept used in the analysis of magnetic circuits. It is analogous to resistance in an electrical circuit, but rather than dissipating magnetic energy it stores magnetic energy. In likeness to the …   Wikipedia

  • Magnetic capacitance — Magnetic Circuits Conventional Magnetic Circuits Magnetomotive force Magnetic flux Φ Magnetic reluctance Phasor Magnetic Circuits Complex reluctance Zμ …   Wikipedia

  • Magnetic effective resistance — Magnetic Circuits Conventional Magnetic Circuits Magnetomotive force Magnetic flux Φ Magnetic reluctance Phasor Magnetic Circuits Complex reluctance Zμ Related Concepts Magnetic permeabili …   Wikipedia

  • Magnetic inductance — Magnetic Circuits Conventional Magnetic Circuits Magnetomotive force Magnetic flux Φ Magnetic reluctance Phasor Magnetic Circuits Complex reluctance Zμ …   Wikipedia

  • Magnetic capacitivity — Magnetic Circuits Conventional Magnetic Circuits Magnetomotive force Magnetic flux Φ Magnetic reluctance Phasor Magnetic Circuits Complex reluctance Zμ …   Wikipedia

  • Magnetic impedance — Magnetic Circuits Conventional Magnetic Circuits Magnetomotive force Magnetic flux Φ Magnetic reluctance Phasor Magnetic Circuits Complex reluctance Zμ …   Wikipedia

  • Magnetic flux — This article is about magnetic flux. For the magnetic field B (magnetic flux per area), see magnetic flux density. For the magnetic field H , see H field. Electromagnetism …   Wikipedia

  • Magnetic field — This article is about a scientific description of the magnetic influence of an electric current or magnetic material. For the physics of magnetic materials, see magnetism. For information about objects that create magnetic fields, see magnet. For …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.