Deltav

For other uses, see Deltav (disambiguation).
In astrodynamics a Δv or deltav (literally "change in velocity") is a scalar which takes units of speed. It is a measure of the amount of "effort" that is needed to change from one trajectory to another by making an orbital maneuver.
Deltav is produced by the use of propellant by reaction engines to produce a thrust that accelerates the vehicle.
Contents
Definition
where
If there are no other external forces than gravity, this is the integral of the magnitude of the gforce.
In the absence of external forces, and when thrust is applied in a constant direction this simplifies to:
which is simply the magnitude of the change in velocity. However, this relation does not hold in the general case: If, for instance, a constant, unidirectional acceleration is reversed after (t_{1} − t_{0}) / 2 then the velocity difference is v_{1} − v_{0} = 0, but deltav is the same as for the nonreversed thrust.
For rockets the 'absence of external forces' usually is taken to mean the absence of atmospheric drag as well as the absence of aerostatic back pressure on the nozzle and hence the vacuum Isp is used for calculating the vehicle's deltav capacity via the rocket equation, and the costs for the atmospheric losses are rolled into the deltav budget when dealing with launches from a planetary surface.^{[citation needed]}
Orbital maneuvers
Orbit maneuvers are made by firing a thruster to produce a reaction force acting on the spacecraft. The size of this force will be
(
where
 is the velocity of the exhaust gas
 is the propellant flow rate to the combustion chamber
The acceleration of the spacecraft caused by this force will be
(
where is the mass of the spacecraft
During the burn the mass of the spacecraft will decrease due to use of fuel, the time derivative of the mass being
(
If now the direction of the force, i.e. the direction of the nozzle, is fixed during the burn one gets the velocity increase from the thruster force of a burn starting at time and ending at as
(
Changing the integration variable from time to the spacecraft mass one gets
(
Assuming to be a constant not depending on the amount of fuel left this relation is integrated to
(
which is the well known "rocket equation"
If for example 20% of the launch mass is fuel giving a constant of 2100 m/s (typical value for a hydrazine thruster) the capacity of the reaction control system is
 m/s = 469 m/s.
If is a nonconstant function of the amount of fuel left^{[1]}
the capacity of the reaction control system is computed by the integral (5)
The acceleration (2) caused by the thruster force is just an additional acceleration to be added to the other accelerations (force per unit mass) affecting the spacecraft and the orbit can easily be propagated with a numerical algorithm including also this thruster force.^{[2]} But for many purposes, typically for studies or for maneuver optimization, they are approximated by impulsive maneuvers as illustrated in figure 1 with a as given by (4). Like this one can for example use a "patched conics" approach modeling the maneuver as a shift from one Kepler orbit to another by an instantaneous change of the velocity vector.
This approximation with impulsive maneuvers is in most cases very accurate, at least when chemical propulsion is used. For low thrust systems, typically electrical propulsion systems, this approximation is less accurate. But even for geostationary spacecraft using electrical propulsion for outofplane control with thruster burn periods extending over several hours around the nodes this approximation is fair.
Producing Deltav
Deltav is typically provided by the thrust of a rocket engine, but can be created by other reaction engines. The timerate of change of deltav is the magnitude of the acceleration caused by the engines, i.e., the thrust per total vehicle mass. The actual acceleration vector would be found by adding thrust per mass on to the gravity vector and the vectors representing any other forces acting on the object.
The total deltav needed is a good starting point for early design decisions since consideration of the added complexities are deferred to later times in the design process.
The rocket equation shows that the required amount of propellant dramatically increases, with increasing deltav. Therefore in modern spacecraft propulsion systems considerable study is put into reducing the total deltav needed for a given spaceflight, as well as designing spacecraft that are capable of producing a large deltav.
Increasing the Deltav provided by a propulsion system can be achieved by:
 staging
 increasing specific impulse
 improving propellant mass fraction
Deltav budgets
Main article: deltav budgetWhen designing a trajectory, deltav budget is used as a good indicator of how much propellant will be required. Propellant usage is an exponential function of deltav in accordance with the rocket equation, it will also depend on the exhaust velocity.
It is not possible to determine deltav requirements from conservation of energy by considering only the total energy of the vehicle in the initial and final orbits since energy is carried away in the exhaust (see also below). For example, most spacecraft are launched in an orbit with inclination fairly near to the latitude at the launch site, to take advantage of the Earth's rotational surface speed. If it is necessary, for missionbased reasons, to put the spacecraft in an orbit of different inclination, a substantial deltav is required, though the specific kinetic and potential energies in the final orbit and the initial orbit are equal.
When rocket thrust is applied in short bursts the other sources of acceleration may be negligible, and the magnitude of the velocity change of one burst may be simply approximated by the deltav. The total deltav to be applied can then simply be found by addition of each of the deltavs needed at the discrete burns, even though between bursts the magnitude and direction of the velocity changes due to gravity, e.g. in an elliptic orbit.
For examples of calculating deltav, see Hohmann transfer orbit, gravitational slingshot, and Interplanetary Superhighway. It is also notable that large thrust can reduce gravity drag.
Deltav is also required to keep satellites in orbit and is expended in propulsive orbital stationkeeping maneuvers. Since the propellant load on most satellites cannot be replenished, the amount of propellant initially loaded on a satellite may well determine its useful lifetime.
Oberth effect
Main article: Oberth effectFrom power considerations, it turns out that when applying deltav in the direction of the velocity the specific orbital energy gained per unit deltav is equal to the instantaneous speed. This is called the Oberth effect.
For example, a satellite in an elliptical orbit is boosted more efficiently at high speed (that is, small altitude) than at low speed (that is, high altitude).
Another example is that when a vehicle is making a pass of a planet, burning the propellant at closest approach rather than further out gives significantly higher final speed, and this is even more so when the planet is a large one with a deep gravity field, such as Jupiter.
See also powered slingshots.
Porkchop plot
Main article: porkchop plotDue to the relative positions of planets changing over time, different deltavs are required at different launch dates. A diagram that shows the required deltav plotted against time is sometimes called a porkchop plot. Such a diagram is useful since it enables calculation of a launch window, since launch should only occur when the mission is within the capabilities of the vehicle to be employed.^{[3]}
Deltavs around the Solar System
See also
 Deltav budget
 Gravity drag
 Orbital maneuver
 Orbital stationkeeping
 Spacecraft propulsion
 Specific impulse
 Tsiolkovsky rocket equation
 Deltav (physics)
References
 ^ Can be the case for a "blowdown" system for which the pressure in the tank gets lower when fuel has been used and that not only the fuel rate but to some lesser extent also the exhaust velocity decreases.
 ^ The thrust force per unit mass being where and are given functions of time
 ^ Mars Exploration: Features
 ^ Rockets and Space Transportation^{[dead link]}. See: Atomic Rocket: Missions
 ^ cislunar deltavs
Categories: Astrodynamics
 Celestial mechanics
 Spacecraft propulsion
Wikimedia Foundation. 2010.
Look at other dictionaries:
delta — delta … Dictionnaire des rimes
Delta — commonly refers to: Delta (letter), Δ or δ in the Greek alphabet, also used as a mathematical symbol River delta, a landform at the mouth of a river Delta Air Lines, a major U.S. airline Delta may also refer to: Contents 1 Places … Wikipedia
Delta IV — Medium Données générales Mission Lanceur Commercial Orbite LEO et GTO Période des lancements … Wikipédia en Français
Delta 2 — Delta II Ne doit pas être confondu avec Delta 2. Une Delta II 7925 s’apprete à lancer la sonde De … Wikipédia en Français
Delta C — The first Delta C launches with Explorer 18 Function Expendable launch system Country of origin … Wikipedia
Delta D — Launch of a Delta D with Intelsat I Function Expendable launch system Country of origin … Wikipedia
Delta J — Launch of the Delta J with Explorer 38 Function Expendable launch system Country of origin … Wikipedia
Delta M — Launch of the first Delta M with Intelsat 301 Function Expendable launch system Country of origin … Wikipedia
delta — [ dɛlta ] n. m. • delta du Nil XIIIe; de delta « lettre grecque » I ♦ Quatrième lettre de l alphabet grec (Δ, δ), correspondant au d. En forme de delta. ⇒ deltoïde, triangulaire. Aile (en) delta. ⇒ deltaplane. ♢ Adj. inv. Phys. Rayon delta :… … Encyclopédie Universelle
Delta A — launching Explorer 14 Function Expendable launch system Country of origin … Wikipedia
Delta B — prior to the launch of TIROS 8 Function Expendable launch system Country of origin … Wikipedia