# Möbius inversion formula

﻿
Möbius inversion formula

In mathematics, the classic Möbius inversion formula was introduced into number theory during the 19th century by August Ferdinand Möbius.

Other Möbius inversion formulas are obtained when different local finite partially ordered sets replace the classic case of the natural numbers ordered by divisibility; for an account of those, see incidence algebra.

## Statement of the formula

The classic version states that if g(n) and f(n) are arithmetic functions satisfying

$g(n)=\sum_{d\,\mid \,n}f(d)\quad\text{for every integer }n\ge 1$

then

$f(n)=\sum_{d\,\mid\, n}\mu(d)g(n/d)\quad\text{for every integer }n\ge 1$

where μ is the Möbius function and the sums extend over all positive divisors d of n. In effect, the original f(n) can be determined given g(n) by using the inversion formula. The two sequences are said to be Möbius transforms of each other.

The formula is also correct if f and g are functions from the positive integers into some abelian group (viewed as a Z-module).

In the language of Dirichlet convolutions , the first formula may be written as

g = f * 1

where * denotes the Dirichlet convolution, and 1 is the constant function 1(n) = 1. The second formula is then written as

f = μ * g.

Many specific examples are given in the article on multiplicative functions.

## Repeated transformations

Given an arithmetic function, one can generate a bi-infinite sequence of other arithmetic functions by repeatedly applying the first summation.

For example, if one starts with Euler's totient function ϕ, and repeatedly applies the transformation process, one obtains:

1. ϕ the totient function
2. ϕ * 1 = Id where Id(n) = n is the identity function
3. Id * 1 = σ, the divisor function

If the starting function is the Möbius function itself, the list of functions is:

1. μ, the Möbius function
2. μ * 1 = ε where $\varepsilon(n) = \begin{cases} 1, & \mbox{if }n=1 \\ 0, & \mbox{if }n>1 \end{cases}$ is the unit function
3. ε * 1 = 1, the constant function
4. 1 * 1 = τ, where τ is the number of divisors of n, (see divisor function).

Both of these lists of functions extend infinitely in both directions. The Möbius inversion formula enables these lists to be traversed backwards. The generated sequences can perhaps be more easily understood by considering the corresponding Dirichlet series: each repeated application of the transform corresponds to multiplication by the Riemann zeta function.

## Generalizations

An equivalent formulation of the inversion formula more useful in combinatorics is as follows: suppose F(x) and G(x) are complex-valued functions defined on the interval [1,∞) such that

$G(x) = \sum_{1 \le n \le x}F(x/n)\quad\mbox{ for all }x\ge 1$

then

$F(x) = \sum_{1 \le n \le x}\mu(n)G(x/n)\quad\mbox{ for all }x\ge 1.$

Here the sums extend over all positive integers n which are less than or equal to x.

This in turn is a special case of a more general form. If α(n) is an arithmetic function possessing a Dirichlet inverse α − 1(n), then if one defines

$G(x) = \sum_{1 \le n \le x}\alpha (n) F(x/n)\quad\mbox{ for all }x\ge 1$

then

$F(x) = \sum_{1 \le n \le x}\alpha^{-1}(n)G(x/n)\quad\mbox{ for all }x\ge 1.$

The previous formula arises in the special case of the constant function α(n) = 1, whose Dirichlet inverse is α − 1(n) = μ(n).

## Multiplicative notation

As Möbius inversion applies to any abelian group, it makes no difference whether the group operation is written as addition or as multiplication. This gives rise to the following notational variant of the inversion formula:

$\mbox{If } F(n) = \prod_{d|n} f(d),\mbox{ then } f(n) = \prod_{d|n} F(n/d)^{\mu(d)}. \,$

## References

• Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR0434929
• Kung, Joseph P.S. (2001), "Möbius inversion", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104
• K. Ireland, M. Rosen. A Classical Introduction to Modern Number Theory, (1990) Springer-Verlag.

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Möbius function — This article is about the number theoretic Möbius function. For the combinatorial Möbius function, see incidence algebra. For the rational functions defined on the complex numbers, see Möbius transformation. The classical Möbius function μ(n) is… …   Wikipedia

• Möbius transform — The Möbius transform should not be confused with Möbius transformations. In mathematics, the Möbius transform Tf of a function f defined on the positive integers is defined by where μ is the classic Möbius function. In more common usage, the… …   Wikipedia

• Möbius transformation — Not to be confused with Möbius transform or Möbius function. In geometry, a Möbius transformation of the plane is a rational function of the form of one complex variable z; here the coefficients a, b, c, d are complex numbers satisfying ad − …   Wikipedia

• Fórmula de inversión de Möbius — La clásica fórmula de inversión de Möbius fue introducida en la teoría de números durante el siglo XIX por August Ferdinand Möbius. Fue generalizada más adelante a otras fórmulas de inversión de Möbius . Formulación La versión clásica establece… …   Wikipedia Español

• Fórmula de inversión de Möbius — La clásica fórmula de inversión de Möbius fue introducida en la teoría de números durante el siglo XIX por August Ferdinand Möbius. Fue generalizada más adelante a otras fórmulas de inversión de Möbius ; vea álgebra de incidencia. La versión… …   Enciclopedia Universal

• Fórmula explícita — En matemática, la fórmula explícita para funciones L son un conjunto de ecuaciones que relacionan sumas sobre «ceros complejos» o «no triviales» de una función L con sumas sobre potencias de primos, introducida por primera vez por Bernhard… …   Wikipedia Español

• Formule d'inversion de Möbius — La formule d’inversion de Möbius classique a été introduite dans la théorie des nombres au cours du XIXe siècle par August Ferdinand Möbius. Elle a été généralisée plus tard à d’autres « formules d’inversion de Möbius ». Énoncé La… …   Wikipédia en Français

• August Ferdinand Möbius — Infobox Scientist box width = 300px name = August Möbius image size = 300px caption = August Ferdinand Möbius (1790 ndash;1868) birth date = November 17, 1790 birth place = Schulpforta, Saxony Anhalt, Germany death date = September 26, 1868 death …   Wikipedia

• Función de Möbius — La función de Möbius μ(n), nombrada así en honor a August Ferdinand Möbius, es una función multiplicativa estudiada en teoría de números y en combinatoria. Contenido 1 Definición 2 Propiedades y aplicaciones 2.1 Teoría de números …   Wikipedia Español

• August Möbius — Saltar a navegación, búsqueda August Möbius August Ferdinand Möbius (17 de noviembre de 1790, Schulpforta, Sajonia, Alemania 26 de septiembre de 1868, Leipzig …   Wikipedia Español