# Dirichlet convolution

﻿
Dirichlet convolution

In mathematics, the Dirichlet convolution is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Johann Peter Gustav Lejeune Dirichlet, a German mathematician.

## Definition

If ƒ and g are two arithmetic functions (i.e. functions from the positive integers to the complex numbers), one defines a new arithmetic function ƒ * g, the Dirichlet convolution of ƒ and g, by

$(f*g)(n) = \sum_{d\,\mid \,n} f(d)g(n/d) \,$

where the sum extends over all positive divisors d of n.

## Properties

The set of arithmetic functions forms a commutative ring, the Dirichlet ring, under pointwise addition and Dirichlet convolution, with the multiplicative identity given by the function $\epsilon$ defined by $\epsilon$(n) = 1 if n = 1 and $\epsilon$(n) = 0 if n > 1. The units of this ring are the arithmetic functions f with f(1) ≠ 0.

Specifically, Dirichlet convolution is associative,

(f * g) * h = f * (g * h),

f * (g + h) = f * g + f * h = (g + h) * f,

and is commutative,

f * g = g * f.

Furthermore,

f * $\epsilon$ = $\epsilon$ * f = f,

and for each f for which f(1) ≠ 0 there exists a g such that f * g = $\epsilon$, called the Dirichlet inverse of f.

The Dirichlet convolution of two multiplicative functions is again multiplicative, and every multiplicative function has a Dirichlet inverse that is also multiplicative. The article on multiplicative functions lists several convolution relations among important multiplicative functions.

Given a completely multiplicative function f then f (g*h) = (f g)*(f h). The convolution of two completely multiplicative functions need not be completely multiplicative.

## Dirichlet inverse

Given an arithmetic function ƒ, an explicit recursive formula for the Dirichlet inverse may be given as follows:

$f^{-1}(1) = \frac {1}{f(1)}$

and for n > 1,

$f^{-1}(n) = \frac {-1}{f(1)}\sum_{d\,\mid \,n,\ d < n} f\left(\frac{n}{d}\right) f^{-1}(d).$

When ƒ(n) = 1 for all n, then the inverse is ƒ −1(n) = μ(n), the Möbius function. The Möbius inversion formula is the special case of the Dirichlet inversion which is valid for completely multiplicative functions, like f(n)=1.

## Dirichlet series

If f is an arithmetic function, one defines its Dirichlet series generating function by

$DG(f;s) = \sum_{n=1}^\infty \frac{f(n)}{n^s}$

for those complex arguments s for which the series converges (if there are any). The multiplication of Dirichlet series is compatible with Dirichlet convolution in the following sense:

$DG(f;s) DG(g;s) = DG(f*g;s)\,$

for all s for which both series of the left hand side converge, one of them at least converging absolutely (note that simple convergence of both series of the left hand side DOES NOT imply convergence of the right hand side!). This is akin to the convolution theorem if one thinks of Dirichlet series as a Fourier transform.

## Related Concepts

The restriction of the divisors in the convolution to unitary, bi-unitary or infinitary divisors defines similar commutative operations which share many features with the Dirichlet convolution (existence of a Möbius inversion, persistence of multiplicativity, definitions of totients, Euler-type product formulas over associated primes,...).

## References

• Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR0434929
• Hugh L. Montgomery; Robert C. Vaughan (2007). Multiplicative number theory I. Classical theory. Cambridge tracts in advanced mathematics. 97. Cambridge: Cambridge Univ. Press. p. 38. ISBN 0-521-84903-9.
• Cohen, Eckford (1959). "A class of residue systems (mod r) and related arithmetical functions. I. A generalization of Möbius inversion". Pacific J. Math. 9 (1): pp. 13—23. MR0109806.
• Cohen, Eckford (1960). "Arithmetical functions associated with the unitary divisors of an integer". Mathematische Zeitschrift 74: pp. 66—80. doi:10.1007/BF01180473. MR0112861.
• Cohen, Eckford (1960). "The number of unitary divisors of an integer". American mathematical monthly 67 (9): pp. 879—880. MR0122790.
• Cohen, Graeme L. (1990). "On an integers' infinitary divisors". Math. Comp. 54 (189): pp. 395—411. doi:10.1090/S0025-5718-1990-0993927-5. MR0993927.
• Cohen, Graeme L. (1993). "Arithmetic functions associated with infinitary divisors of an integer". Intl. J. Math. Math. Sci. 16 (2): pp. 373—383. doi:10.1155/S0161171293000456.
• Sandor, Jozsef; Berge, Antal (2003). "The Möbius function: generalizations and extensions". Adv. Stud. Contemp. Math. (Kyungshang) 6 (2): 77–128. MR1962765.
• Finch, Steven (2004). "Unitarism and Infinitarism".

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Convolution — For the usage in formal language theory, see Convolution (computer science). Convolution of two square pulses: the resulting waveform is a triangular pulse. One of the functions (in this case g) is first reflected about τ = 0 and then offset by t …   Wikipedia

• Dirichlet series — In mathematics, a Dirichlet series is any series of the form where s and an are complex numbers and n = 1, 2, 3, ... . It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analytic number theory …   Wikipedia

• Convolution De Dirichlet — Johann Peter Gustav Lejeune Dirichlet développe son produit en 1937 pour démontrer le théorème de la progression arithmétique. En mathématiques, la convolution de Dirichlet, encore appelée produit de convolution de Dirichlet ou produit de… …   Wikipédia en Français

• Dirichlet (Homonymie) — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Johann Peter Gustav Lejeune Dirichlet est un mathématicien allemand du XIXe siècle dont le travail est surtout en théorie des nombres. Arithmétique… …   Wikipédia en Français

• Convolution de Dirichlet — En mathématiques, la convolution de Dirichlet, encore appelée produit de convolution de Dirichlet ou produit de Dirichlet est une loi de composition interne définie sur l ensemble des fonctions arithmétiques, c est à dire des fonctions définies… …   Wikipédia en Français

• Dirichlet kernel — In mathematical analysis, the Dirichlet kernel is the collection of functions It is named after Johann Peter Gustav Lejeune Dirichlet. The importance of the Dirichlet kernel comes from its relation to Fourier series. The convolution of Dn(x) with …   Wikipedia

• Dirichlet (homonymie) — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Johann Peter Gustav Lejeune Dirichlet est un mathématicien allemand du XIXe siècle dont le travail est surtout en théorie des nombres. Arithmétique… …   Wikipédia en Français

• Convolution — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sur les autres projets Wikimedia : « Convolution », sur le Wiktionnaire (dictionnaire universel) Le terme convolution désigne deux types d… …   Wikipédia en Français

• Produit de convolution de Dirichlet — Convolution de Dirichlet Johann Peter Gustav Lejeune Dirichlet développe son produit en 1937 pour démontrer le théorème de la progression arithmétique. En mathématiques, la convolution de Dirichlet, encore appelée produit de convolution de… …   Wikipédia en Français

• Fonction de Dirichlet — Dirichlet (homonymie) Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Johann Peter Gustav Lejeune Dirichlet est un mathématicien allemand du XIXe siècle dont le travail est surtout en théorie des… …   Wikipédia en Français