Mechanical Concrete

A Mechanical Concrete tire-derived cylinder
A Mechanical Concrete cell: a tire-derived cylinder filled with aggregate

Mechanical Concrete® is the registered trademark name for a confined-aggregate concrete, a simple and economical building material patented in the United States in 2008.

Confined-aggregate concrete is made by using a cylindrical segment to mechanically confine crushed stone or other aggregate materials, creating a cellular, load-supporting unit. Arranged in horizontal or vertical configurations, the units may be combined to form roadway bases, foundations, bearing and retaining walls and other structures.

The technology was invented in 2004 by Samuel G. Bonasso, a professional civil engineer, a former secretary of the West Virginia Department of Transportation and former deputy administrator of the Research and Special Programs Administration and of the Research and Innovative Technology Administration of the U.S. Department of Transportation[1].

Research, laboratory testing and field demonstration beginning in the spring of 2005 led to its acceptance in October 2008 for roadway construction in the state of West Virginia by the West Virginia Department of Transportation[2].

The U.S. Patent and Trademark Office awarded Mechanical Concrete a patent in 2008[3][4] and the technology has since been licensed by Bonasso’s Reinforced Aggregates Co. of Morgantown, W.Va. By mid-2011, the technology had seen success in West Virginia[5], was in use in road construction in commercial and public sector applications in four other states — Arizona, California, Ohio, and Pennsylvania — and had been presented to international audiences[6].

Early manufacturing licensees include Tireland, Inc. of Morgantown, W.Va. and Wyatt's Tire Removal of Wooster, Ohio; early construction projects licensees include Laurita, Inc., of Morgantown, W.Va., GAL Construction, Inc. of Belle Vernon, Pa., and Sundt Construction, Inc. of Tempe, Ariz.

A patent application is pending in Canada.

Contents

Concrete

The Latin roots of the word “concrete” mean “to grow together.”

What is usually called concrete is made by combining a cementing mixture, usually Portland cement, and water with mineral aggregates: sand and gravel. The cement and water undergo a chemical reaction that causes the mixture to harden, or cure; when poured into a form, the chemical reaction binds and integrates the whole into a desired shape.

In Mechanical Concrete, the cylinder, Mechanical Cement®, replaces the cement, water and forms, offering a “mechanical” rather than a “chemical” means of binding aggregates together. It further functions as a lateral reinforcing element and as a stay-in-place forming device. Together, the cylinder and aggregates form a three-dimensional mass capable of supporting and transmitting applied loads.

How Mechanical Concrete is made

In its most general description, Mechanical Concrete is created by taking a sufficiently strong, structural, thin-walled, cylindrical segment made of any tensile material and filling this cylinder with a suitably strong granular aggregate compressive material.

A common, available form of Mechanical Concrete combines a tire-derived cylinder — a used vehicle tire with both sidewalls removed — with crushed limestone or similar natural or recycled aggregate. The cylinder confines and integrates the stone into a functioning, load-supporting unit, analogous to brick or block. It functions as a structural substitute for conventional Portland cement concrete bricks and blocks and for poured-in-place concrete.

Mechanical Concrete elements may be combined in various three-dimensional configurations analogous to large bricks or blocks. To preserve overall structural geometry during stone-filling operations, each cylinder is attached to its adjacent cylinder with a tie, nail or other suitable device. Once the structure is built, the mass and internal friction maintain the structural geometry.

On average, 10 to 12 automobile tires create one cubic yard of Mechanical Concrete and 12,000 tire-derived cylinders create a 12-foot-wide, mile-long lane of roadway and 8000 to cover one acre.

Uses and Applications

A road built with a base of mechanical concrete supports a heavy load.

Collections of Mechanical Concrete cylindrical units are suitable for use as a roadway base, as a building foundation on most types of soil, as a bearing or retaining wall, as a material for constructing dams and levees and for revetments, fills, storm water retention structures and other bearing-type load-supporting structures in architectural and civil engineering. Collections of Mechanical Concrete cylinders may be stacked into columns in a wide variety of configurations of constant or varying height, width and length.

Because the Mechanical Concrete material is load-bearing and porous and permeable, it can also be used for some types of water drainage and treatment applications.

When made from tire-derived cylinders, Mechanical Concrete is a highly energy-absorbing material, due to the partial fluid properties of the stone aggregate and the elasticity of the tire tread cylinder. This energy-absorbing characteristic suggests its use as highway crash barriers for both low-speed and high-speed situations. It also suggests its use as a base isolation material in some earthquake prone regions. It can provide an inexpensive base-isolation alternative for new and retrofit mobile home and residential foundations; in addition, it offers a new material for a rational design approach to larger base isolation structures.

Since 2006, it has been used to build public access and private industrial road bases in California, Arizona, West Virginia, Ohio, and Pennsylvania.

Because of its simplicity and ease of construction, Mechanical Concrete can assist developing regions globally in building and maintaining low-cost, reliable, all-season farm-to-market rural roads with local labor, materials and equipment.

Mechanical Concrete was exhibited at the 10th International Conference on Low-Volume Roads hosted in July 2011 by the Transportation Research Board of the National Academies.

Benefits

Mechanical Concrete is simple. Using Mechanical Concrete methods, general, unskilled construction laborers can transform stone aggregates and other indigenous earthen materials into new, functioning solid building materials faster than using conventional materials, means and methods. Strong, resilient, permeable unpaved roadways, retaining and bearing walls, and foundations may be constructed with minimal training and little supporting industrial infrastructure and with limited supervision.

Mechanical Concrete is strong. A tire-derived cylinder filled with crushed limestone or similar aggregate produces 200 pounds per square inch (14.4 tons per square foot) working-strength material. Tractor-trailer trucks at maximum legal weight generate 100 pounds per square inch of vertical pressure.

Mechanical Concrete is economical. Costs are less by 25 to 50 percent compared with reinforced concrete or masonry construction for a variety of reasons. First, most reinforced concrete and masonry structures are inherently over-designed to resist the bearing-type stresses generated by the loads supported. Although Mechanical Concrete is over-designed, it operates much closer to the bearing stress range generated by the loads being supported so it is more economical. In addition, a Mechanical Concrete structure is manufactured at the construction site and ready to resist loads as soon as it is placed — no setting or curing time is required. To create and build these structures consumes less net energy than comparable construction methods.

In addition, Mechanical Concrete, when constructed using tire-derived cylinders, offers a solution to a major global environmental waste problem. Each year, the United States generates about 300 million waste automobile tires – roughly one tire per person per year[7]. As of 2007, about 90 percent of used tires found some end use, mostly as tire-derived fuel used for power generation. Still, some 128 million waste tires were stacked high in unhealthy and dangerous piles across the nation[8]. Burying tire-derived material is a method environmental agencies prefer for using and disposing of waste tires[9]. In the U.S. Environmental Protection Agency’s formal hierarchy of solid waste management, re-use delivers greater environmental benefit than recycling[10].

External Links

References


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Concrete degradation — may have various causes. Concrete can be damaged by fire, aggregate expansion, sea water effects, bacterial corrosion, calcium leaching, physical damage and chemical damage (from carbonation, chlorides, sulfates and distilled water). This process …   Wikipedia

  • Mechanical and organic solidarity — Mechanical Solidarity and Organic Solidarity refer to the concepts of solidarity as developed by Émile Durkheim. They are used in the context of differentiating between mechanical and organic societies. According to Durkheim, the types of social… …   Wikipedia

  • Concrete — This article is about the construction material. For other uses, see Concrete (disambiguation). Outer view of the Roman Pantheon, still the largest unreinforced solid concrete dome.[1] …   Wikipedia

  • Reinforced concrete — is concrete in which reinforcement bars ( rebars ), reinforcement grids, plates or fibers have been incorporated to strengthen the concrete in tension. It was invented by French gardener Joseph Monier in 1849 and patented in 1867.[1] The term… …   Wikipedia

  • Types of concrete — There are many types of concrete, variations of installation, composition, finish and performance characteristics. A highway paved with concrete …   Wikipedia

  • Musique concrète — (French for concrete music ) is a form of electroacoustic music that utilises acousmatic sound as a compositional resource. The compositional material is not restricted to the inclusion of sounds derived from musical instruments or voices, nor to …   Wikipedia

  • Roman concrete — The Pantheon in Rome, Italy, is an example of Roman concrete construction. Roman concrete (also called Opus caementicium) was a material used in construction during the late Roman Republic through the whole history of the Roman Empire. Roman… …   Wikipedia

  • Vibrator (mechanical) — A vibrator is a mechanical device that is designed to generate vibrations. The vibration is often generated by an electric motor with an unbalanced mass on its driveshaft. If the motor is switched on, the rotating weight resonates.There are many… …   Wikipedia

  • Decorative concrete — Stamped Concrete in various patterns, highlighted with acid stain) Decorative concrete is the use of concrete as not simply a utilitarian medium for construction but as an aesthetic enhancement to a structure, while still serving its function as… …   Wikipedia

  • Glass fiber reinforced concrete — (GFRC) is a type of fiber reinforced concrete. Glass fiber concretes are mainly used in exterior building façade panels and as architectural precast concrete. This material is very good in making shapes on the front of any building and it is less …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.