Negation

For other uses, see Negation (disambiguation).
In logic and mathematics, negation, also called logical complement, is an operation on propositions, truth values, or semantic values more generally. Intuitively, the negation of a proposition is true when that proposition is false, and vice versa. In classical logic negation is normally identified with the truth function that takes truth to falsity and vice versa. In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition p is the proposition whose proofs are the refutations of p. In Kripke semantics where the semantic values of formulae are sets of possible worlds, negation is settheoretic complementation.
Contents
Definition
Classical negation is an operation on one logical value, typically the value of a proposition, that produces a value of true when its operand is false and a value of false when its operand is true. So, if statement A is true, then ¬A (pronounced "not A") would therefore be false; and conversely, if ¬A is true, then A would be false.
The truth table of ¬p is as follows:
Truth table of ¬p p ¬p True False False True Classical negation can be defined in terms of other logical operations. For example, ¬p can be defined as p → F, where "→" is logical implication and F is absolute falsehood. Conversely, one can define F as p & ¬p for any proposition p, where "&" is logical conjunction. The idea here is that any contradiction is false. While these ideas work in both classical and intuitionistic logic, they do not work in Brazilian logic, where contradictions are not necessarily false. But in classical logic, we get a further identity: p → q can be defined as ¬p ∨ q, where "∨" is logical disjunction: "not p, or q".
Algebraically, classical negation corresponds to complementation in a Boolean algebra, and intuitionistic negation to pseudocomplementation in a Heyting algebra. These algebras provide a semantics for classical and intuitionistic logic respectively.
Notation
The negation of a proposition p is notated in different ways in various contexts of discussion and fields of application. Among these variants are the following:
Notation Vocalization ¬p not p −p not p ~p not p Np en p p prime, p complement
p bar, bar p
bang p No matter how it is notated or symbolized, the negation ¬p / −p can be read as "it is not the case that p", "not that p", or usually more simply (though not grammatically) as "not p".
Properties
Double negation
Within a system of classical logic, double negation, that is, the negation of the negation of a proposition p, is logically equivalent to the p. Expressed in symbolic terms, ¬(¬p) ⇔ p. In intuitionistic logic, a proposition implies its double negation but not conversely. This marks one important difference between classical and intuitionistic negation. Algebraically, classical negation is called an involution of period two.
However, in intuitionistic logic we do have the equivalence of ¬¬¬p and ¬p. Moreover, in the propositional case, a sentence is classically provable if its double negation is intuitionistically provable. This result is known as Glivenko's theorem.
Distributivity
~~ this is not true, you cannot distribute not across a logical equivalence. You can only distribute a negation of a statement. ~(P^Q) ~P v ~Q would be a correct display of distribution using de morgans law.(^ is and, v is or)
Linearity
In Boolean algebra, a linear function is one such that:
If there exists a_{0}, a_{1}, ... , a_{n} {0,1} such that f(b_{1}, ... , b_{n}) = a_{0} ⊕ (a_{1} b_{1}) ⊕ ... ⊕ (a_{n} b_{n}), for all b_{1}, ... , b_{n} {0,1}.
Another way to express this is that each variable always makes a difference in the truthvalue of the operation or it never makes a difference. Negation is a linear logical operator.
Self dual
In Boolean algebra a self dual function is one such that:
If f(a_{1}, ... , a_{n}) = ~f(~a_{1}, ... , ~a_{n}) for all a_{1}, ... , a_{n} {0,1}. Negation is a self dual logical operator.
Rules of inference
There are a number of equivalent ways to formulate rules for negation. One usual way to formulate classical negation in a natural deduction setting is to take as primitive rules of inference negation introduction (from a derivation of p to both q and ¬q, infer ¬p; this rule also being called reductio ad absurdum), negation elimination (from p and ¬p infer q; this rule also being called ex falso quodlibet), and double negation elimination (from ¬¬p infer p). One obtains the rules for intuitionistic negation the same way but by excluding double negation elimination.
Negation introduction states that if an absurdity can be drawn as conclusion from p then p must not be the case (i.e. p is false (classically) or refutable (intuitionistically) or etc.). Negation elimination states that anything follows from an absurdity. Sometimes negation elimination is formulated using a primitive absurdity sign ⊥. In this case the rule says that from p and ¬p follows an absurdity. Together with double negation elimination one may infer our originally formulated rule, namely that anything follows from an absurdity.
Typically the intuitionistic negation ¬p of p is defined as p→⊥. Then negation introduction and elimination are just special cases of implication introduction (conditional proof) and elimination (modus ponens). In this case one must also add as a primitive rule ex falso quodlibet.
Programming
As in mathematics, negation is used in computer science to construct logical statements.
if (!(r == t)) { /*...statements executed when r does NOT equal t...*/ }
The "
!
" signifies logical NOT in B, C, and languages with a Cinspired syntax such as C++, Java, JavaScript, Perl, and PHP. "NOT
" is the operator used in ALGOL 60, BASIC, and languages with an ALGOLinspired syntax such as Pascal, Ada, Eiffel and Seed7. Some languages (C++, Perl, etc.) provide more than one operator for negation. A few languages like PL/I and Ratfor, use¬
for negation. Some modern computers and operating systems will display¬
as!
on files encoded in ASCII.In computer science there is also bitwise negation. This takes the value given and switches all the binary 1s to 0s and 0s to 1s. See bitwise operation. This is often used to create ones' complement or "
~
" in C or C++ and two's complement (just simplified to "
" or the negative sign since this is equivalent to taking the arithmetic negative value of the number) as it basically creates the opposite (negative value equivalent) or mathematical complement of the value (where both values are added together they create a whole).To get the absolute (positive equivalent) value of a given integer the following would work as the "

" changes it from negative to positive (it is negative because "x < 0
" yields true)unsigned int abs(int x) { if (x < 0) return x; else return x; }
To demonstrate logical negation:
unsigned int abs(int x) { if (!(x < 0)) return x; else return x; }
Inverting the condition and reversing the outcomes produces code that is logically equivalent to the original code, i.e. will have identical results for any input. (Note that depending on the compiler used, the actual instructions performed by the computer may differ.)
See also
 Logical conjunction
 Logical disjunction
 NOT gate
 Bitwise NOT
 Ampheck
 Apophasis
 Cyclic negation
 Double negative elimination
 Grammatical polarity
 Minimal negation operator
 Negation (linguistics)
 Negation as failure
 Square of opposition
References
 Gabbay, Dov, and Wansing, Heinrich, eds., 1999. What is Negation?, Kluwer.
 Horn, L., 2001. A Natural History of Negation, University of Chicago Press.
 G. H. von Wright, 1953–59, "On the Logic of Negation", Commentationes PhysicoMathematicae 22.
 Wansing, Heinrich, 2001, "Negation," in Goble, Lou, ed., The Blackwell Guide to Philosophical Logic, Blackwell.
 Marco Tettamanti, Rosa Manenti  Pasquale A. Della Rosa  Andrea Falini  Daniela Perani  Stefano F. Cappa and Andrea Moro (2008) "Negation in the brain: Modulating action representation", NeuroImage Volume 43, Issue 2, 1 November 2008, Pages 358367, http://dx.doi.org/10.1016/j.neuroimage.2008.08.004/
External links
Logical connectives Categories: Grammar
 Semantics
 Boolean algebra
 Logical connectives
 Propositional calculus
Wikimedia Foundation. 2010.
Look at other dictionaries:
négation — [ negasjɔ̃ ] n. f. • negatiun XII e; lat. negatio, de negare « nier » 1 ♦ Acte de l esprit qui consiste à nier, à rejeter un rapport, une proposition, une existence; expression de cet acte. Négation de Dieu. Négation de la vérité, des valeurs. ⇒… … Encyclopédie Universelle
Negation — (von lat.: negare = verneinen) ist Ablehnung, Verneinung oder Aufhebung; verneint werden können zum Beispiel Aussagen, abgelehnt werden können zum Beispiel moralische Werte, aufgehoben werden können zum Beispiel Konventionen. Inhaltsverzeichnis 1 … Deutsch Wikipedia
negation — [ni gā′shən] n. [< Fr or L: Fr négation < L negatio < negatus, pp. of negare, to deny < neg(i) < ne (see NO1) + * g(h) < IE * ĝ(h)i, intens. particle used after negation] 1. the act or an instance of denying; negative answer;… … English World dictionary
negation — Negation. s. f. Terme dogmatique. Il est opposé à affirmation. Toute proposition contient affirmation ou negation. en François deux negations n ont point la force d affirmer comme en latin, où deux negations valent une affirmation. Il sign. aussi … Dictionnaire de l'Académie française
negation — I noun abjuration, abnegation, abolishment, abolition, abrogation, annulment, cancellation, cassation, confutation, contradiction, contravention, declination, declinature, defiance, denial, disaffirmation, disagreement, disapprobation,… … Law dictionary
negation — ► NOUN 1) the contradiction or denial of something. 2) the absence or opposite of something actual or positive: evil is not merely the negation of goodness. 3) Mathematics replacement of positive by negative … English terms dictionary
Negation — Ne*ga tion, n. [L. negatio, fr. negare to say no, to deny; ne not + the root of aio I say; cf. Gr. ?, Skr. ah to say; cf. F. n[ e]gation. See {No}, adv., and cf. {Adage}, {Deny}, {Renegade}.] 1. The act of denying; assertion of the nonreality or… … The Collaborative International Dictionary of English
Negation — (v. lat.), die Wegnahme oder Verneinung von etwas Gesetztem od. Behauptetem (Position). Die N. sagt aus, daß ein Begriff nicht das Merkmal od. das Prädicat eines andern sei Was in dieser Beziehung steht, ist negativ, als Gegensatz des in jener… … Pierer's UniversalLexikon
Negation — (lat.), Verneinung, d.h. Aufhebung eines andern in Gedanken Gesetzten, daher stets auf eine vorausgegangene Bejahung oder Position bezüglich und niemals für sich denkbar. Das Verhältnis der Ausschließung, das zwischen der Bejahung (Affirmation)… … Meyers Großes KonversationsLexikon
Negation — Negatiōn (lat.), Verneinung; negativ, verneinend, dem Positiven entgegengesetzt … Kleines KonversationsLexikon
Negation — (vom lat. negare, leugnen), die Verneinung, Aufhebung einer Bejahung; negativ, verneinend; negativer Begriff, ein aus der Verneinung eines andern entstandener. z.B. Abwesenheit von Licht = Finsterniß, Mangel an Wärme = Kälte; negative Größen, was … Herders ConversationsLexikon