Command neuron

Command neuron

A command neuron is a single neuron (or small set of neurons) whose stimulation results in the evocation of an endogenous, specific, naturally occurring behavior pattern (Carew, 2000). Command neurons act as neural decision making cells; push buttons that can trigger a complete, coordinated behavioral act and are often the sole determinant of whether an action is performed or not. Command neurons receive a convergence of integrative and sensory input and output to a multifarious group of pattern generating efferent cells. Stimulation of the command neuron triggers a lower level central pattern generator whose motorneurons and interneurons produce a particular fixed action pattern.



The term command neuron first appeared in a 1964 paper "Interneurons Commanding Swimmeret Movements in the Crayfish" by CAG Wiersma and K Ikeda in volume 12 of Comparative Biochemistry and Physiology vol 12 on pp 509–525. Wiersma and Ikeda used the term to describe how a single action potential in any of the four giant fibers that run along the dorsal margin of the crayfish nerve cord caused the crayfish to execute a tail-flip escape response. This concept came to epitomize the general neurobiological principle that complex information can be encoded on the level of individual neurons. Soon, researchers were finding command neurons in multiple invertebrate and vertebrate species, including: teleosts, crickets, cockroaches, and lobsters.


In 1978, Kupfermann and Weiss' "The Command Neuron Concept" proposed a more rigorous definition of the command neuron than had previously been used. They suggested that for any neuron to qualify as a command neuron, its activity had to be both necessary and sufficient for the initiation of the behavior it was purported to command. This article initiated a torrent of tumultuous debate about which neurons, if any, could fit the new, more rigorous definition proposed by Kupfermann and Weiss.

Modern view

Many believe that the command neuron concept needs to be reworked in light of the subtleties uncovered by Kupfermann and Weiss' careful methodology. Even the Mauthner cell, an archetypal command cell, has been criticized as being neither necessary nor sufficient for the initiation of the C-start response it supposedly governs. Command decisions are increasingly seen as being governed by networks of interacting and redundant cells, not simply by single neurons. Critics believe that the less restrictive category of "command-like" neurons would repair the flaws in the overly strict Kupfermann and Weiss definition while more accurately classifying the role of single neurons in command decisions.

Despite Kupfermann and Weiss' scathing critique of the loose fashion with which the command neuron concept was being used in the late 1970s and the resultant abandonment of the concept by some, the command neuron concept is still extant in the most current neurobiological literature. Some accept the revisionist "command-like" neuron concept--believing that no neurons exist which can satisfy the strictures outlined in "The Command Neuron Concept". Others cling to use of the original command neuron concept as useful, rejecting the Kupfermann and Weiss strictures, and using less stringent definitions of the term (. Most seem to believe that there is a spectrum of pre-motor command organization: from parallel distributed networks on the one end, to command neurons on the other (Edwards et al. 1999)

See also


  • Carew, T. 2000. Behavioral Neurobiology. Sinauer. Sunderland MA.
  • Eaton R.C., DiDomenico R. 1985. Command and the neural causation of behavior: a theoretical analysis of the necessity and sufficiency paradigm. Brain Behav Evol. 27(2-4):132-64.
  • Edwards, D. H., Heitler, W. J. & Krasne, F. B. 1999. Fifty years of command neurons: the neurobiology of escape behavior in the crayfish. Trends Neurosci. 22, 153–161.
  • Hediwg, B. 2000. Control of Cricket Stridulation by a Command Neuron: Efficacy Depends on the Behavioral State. J Neurophysiol 83: 712-722.
  • Korn, H., and Faber, D.S. 2005. The Mauthner Cell half a century later: a neurobiological model for decision-making? Neuron. 47, 13-28.
  • Kupfermann, I. and Weiss, K. R. 1978. The command neuron concept. Behav. Brain Sci. 1: 3–39
  • Reichert, H., and Wine, J. J. 1983. Coordination of lateral giant and non-giant systems in crayfish escape behaviour. Journal of Comparative Physiology. A. 153: 3-15.
  • Roberts, A., Krasne, F. B., Hagiwara, G., Wme, J. J., and Krarner, A. P. 1982. Segmental giant: Evidence for a driver neuron interposed between command and motor neurons in the crayfish escape system. Journal of Neurophysiology 47: 761-781.
  • Wiersma, C.A.G. and Ikeda, K. 1964. Interneurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard) Comparative Biochemistry and Physiology. 12: 509-525
  • Wine, J. J. 1984. The structural basis of an innate behavioural pattern. Journal of Experimental Biology 112: 283-319.

External links

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Motor neuron — Neuron: Motor neuron Micrograph of the hypoglossal nucleus showing motor neurons with their c …   Wikipedia

  • Dassault nEUROn — nEUROn Full scale mockup Role Experimental Stealth Unmanned Combat Air Vehicle …   Wikipedia

  • Caridoid escape reaction — The Caridoid Escape Reaction, also known as lobstering or tail flipping, refers to an innate escape mechanism in marine and freshwater crustaceans such as lobsters , krill, shrimp, and crayfish. It has been most extensively researched in crayfish …   Wikipedia

  • Nervous system — Nerve redirects here. For other uses, see Nerve (disambiguation). This article is about the nervous system. For parts of the nervous system commonly called nerves, see Peripheral nerve. Nervous system The Human N …   Wikipedia

  • Mauthner cell — The Mauthner Cells are a pair of big and easily identifiable neurons (one for each half of the body) located in the rhombomere 4 of the hindbrain in fish and amphibians that are responsible for a very fast escape reflex (in the majority of… …   Wikipedia

  • nervous system — Anat., Zool. 1. the system of nerves and nerve centers in an animal or human, including the brain, spinal cord, nerves, and ganglia. 2. a particular part of this system. Cf. autonomic nervous system, central nervous system, peripheral nervous… …   Universalium

  • Lateral Giant Interneuron — The lateral giant neuron (LG) is an interneuron in the abdominal nerve cord of crayfish. It is part of the system that controls a special kind of escape reflex of crayfish.When the sensory hairs of the tail fan of crayfish are stimulated, the LG… …   Wikipedia

  • Medial giant interneuron — The medial giant interneuron (MG) is an interneuron in the abdominal nerve cord of crayfish. It is part of the system that controls the caridoid escape reaction of crayfish, clawed lobsters, and other decapod crustaceans. Crayfish have a pair of… …   Wikipedia

  • nervous system, human — ▪ anatomy Introduction       system that conducts stimuli from sensory receptors to the brain and spinal cord and that conducts impulses back to other parts of the body. As with other higher vertebrates, the human nervous system has two main… …   Universalium

  • muscle disease — ▪ pathology Introduction       any of the diseases and disorders that affect the human muscle system (muscle system, human). Diseases and disorders that result from direct abnormalities of the muscles are called primary muscle diseases; those… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.