# Collision theory

﻿
Collision theory
Reaction rate tends to increase with concentration phenomenon explained by collision theory

Collision theory is a theory proposed by Max Trautz[1] and William Lewis in 1916 and 1918, that qualitatively explains how chemical reactions occur and why reaction rates differ for different reactions.[2] For a reaction to occur the reactant particles must collide. Only a certain fraction of the total collisions cause chemical change; these are called successful collisions. The successful collisions have sufficient energy (activation energy) at the moment of impact to break the existing bonds and form new bonds, resulting in the products of the reaction. Increasing the concentration of the reactants and raising the temperature brings about more collisions and therefore more successful collisions, increasing the rate of reaction.

When a catalyst is involved in the collision between the reactant molecules, less energy is required for the chemical change to take place, and hence more collisions have sufficient energy for reaction to occur. The reaction rate therefore increases.

Collision theory is closely related to chemical kinetics.

## Rate constant

The rate constant for a bimolecular gas phase reaction, as predicted by collision theory is:

$k(T) = Z \rho \exp \left( \frac{-E_{a}}{RT} \right)$.

where:

The collision frequency is:

$Z = N_A \sigma_{AB} \sqrt \frac{8 k_B T}{\pi \mu_{AB}}$

where:

## Quantitative insights

### Derivation

Consider the reaction:

A + B → C

In collision theory it is considered that two particles A and B will collide if their nuclei get closer than a certain distance. The area around a molecule A in which it can collide with an approaching B molecule is called the cross section (σAB) of the reaction and is, in principle, the area corresponding to a circle whose radius (rAB) is the sum of the radii of both reacting molecules, which are supposed to be spherical. A moving molecule will therefore sweep a volume $\scriptstyle \pi r^{2}_{AB} c_A$ per second as it moves, where $\scriptstyle c_A$ is the average velocity of the particle.

From kinetic theory it is known that a molecule of A has an average velocity (different from root mean square velocity) of $c_A = \sqrt \frac{8 k_B T}{\pi m_A}$, where $\scriptstyle k_B$ is Boltzmann constant and $\scriptstyle m_A$ is the mass of the molecule.

The solution of the two body problem states that two different moving bodies can be treated as one body which has the reduced mass of both and moves with the velocity of the center of mass, so, in this system μAB must be used instead of mA.

Therefore, the total collision frequency,[3] of all A molecules, with all B molecules, is:

$N_A^{2} \sigma_{AB} \sqrt \frac{8 k_B T}{\pi \mu_{AB}}[A][B] =N_A^{2} r^{2}_{AB} \sqrt \frac{8 \pi k_B T}{ \mu_{AB}}[A][B] = Z [A][B]$

From Maxwell Boltzmann distribution it can be deduced that the fraction of collisions with more energy than the activation energy is $e^{\frac{-E_a}{k_BT}}$. Therefore the rate of a bimolecular reaction for ideal gases will be:

$r = Z \rho [A][B] \exp \left( \frac{-E_{a}}{RT} \right)$

Where:

• Z is the collision frequency.
• $\scriptstyle \rho$ is the steric factor, which will be discussed in detail in the next section.
• Ea is the activation energy of the reaction.
• T is the absolute temperature.
• R is gas constant.

The product Zρ is equivalent to the preexponential factor of the Arrhenius equation.

### Validity of the theory and steric factor

Once a theory is formulated, its validity must be tested, that is, compare its predictions with the results of the experiments.

When the expression form of the rate constant is compared with the rate equation for an elementary bimolecular reaction, $\scriptstyle r =k(T) [A][B]$, it is noticed that $k(T) = N_A^{2} \sigma_{AB} \sqrt \frac{8 k_B T}{\pi m_A} \exp \left( \frac{-E_{a}}{RT} \right)$.

That expression is similar to the Arrhenius equation, and gives the first theoretical explanation for the Arrhenius equation on a molecular basis. The weak temperature dependence of the preexponential factor is so small compared to the exponential factor that it cannot be measured experimentally, that is, "it is not feasible to establish, on the basis of temperature studies of the rate constant, whether the predicted T½ dependence of the preexponential factor is observed experimentally"[citation needed]

#### Steric factor

If the values of the predicted rate constants are compared with the values of known rate constants it is noticed that collision theory fails to estimate the constants correctly and the more complex the molecules are, the more it fails. The reason for this is that particles have been supposed to be spherical and able to react in all directions; that is not true, as the orientation of the collisions is not always the right one. For example in the hydrogenation reaction of ethylene the H2 molecule must approach the bonding zone between the atoms, and only a few of all the possible collisions fulfill this requirement.

To alleviate this problem, a new concept must be introduced: the steric factor, ρ. It is defined as the ratio between the experimental value and the predicted one (or the ratio between the frequency factor and the collision frequency, and it is most often less than unity.[4]

$\rho = \frac{A_{observed}}{Z_{calculated}}$

Usually, the more complex the reactant molecules, the lower the steric factor. Nevertheless, some reactions exhibit steric factors greater than unity: the harpoon reactions, which involve atoms that exchange electrons, producing ions. The deviation from unity can have different causes: the molecules are not spherical, so different geometries are possible; not all the kinetic energy is delivered into the right spot; the presence of a solvent (when applied to solutions), etc.

Experimental rate constants compared to the ones predicted by collision theory for gas phase reactions
Reaction A (Azra frequency factor) Z (collision frequency) Steric factor
2ClNO → 2Cl + 2NO 9.4 109 5.9 1010 0.16
2ClO → Cl2 + O2 6.3 107 2.5 1010 2.3 10−3
H2 + C2H4 → C2H6 1.24 106 7.3 1011 1.7 10−6
Br2 + K → KBr + Br 1012 2.1 1011 4.3

Collision theory can be applied to reactions in solution; in that case, the solvent cage has an effect on the reactant molecules and several collisions can take place in a single encounter, which leads to predicted preexponential factors being too large. ρ values greater than unity can be attributed to favorable entropic contributions.

Experimental rate constants compared to the ones predicted by collision theory for reactions in solution[5]
Reaction Solvent A 10−11 Z 10−11 Steric factor
C2H5Br + OH- C2H5OH 4.30 3.86 1.11
C2H5O- + CH3I C2H5OH 2.42 1.93 1.25
ClCH2CO2- + OH- water 4.55 2.86 1.59
C3H6Br2 + I- CH3OH 1.07 1.39 0.77
HOCH2CH2Cl + OH- water 25.5 2.78 9.17
4-CH3C6H4O- + CH3I ethanol 8.49 1.99 4.27
CH3(CH2)2Cl + I- (CH3)2CO 0.085 1.57 0.054
C5H5N + CH3I C2H2Cl4 - - 2.0 10−6

## References

1. ^ Trautz, Max. Das Gesetz der Reaktionsgeschwindigkeit und der Gleichgewichte in Gasen. Bestätigung der Additivität von Cv-3/2R. Neue Bestimmung der Integrationskonstanten und der Moleküldurchmesser, Zeitschrift für anorganische und allgemeine Chemie, Volume 96, Issue 1, Pages 1 - 28, 1916, [1]
2. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "collision theory".
3. ^ a b IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "collision frequency".
4. ^ a b IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "steric factor".
5. ^ Moelwyn-Hughes

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• collision theory — ▪ chemistry       theory used to predict the rates of chemical reactions, particularly for gases. The collision theory is based on the assumption that for a reaction to occur it is necessary for the reacting species (atoms or molecules) to come… …   Universalium

• collision theory — susidūrimų teorija statusas T sritis fizika atitikmenys: angl. collision theory; impact theory vok. Stoßtheorie, f rus. теория столкновений, f pranc. théorie des chocs, f; théorie des collisions, f …   Fizikos terminų žodynas

• collision theory — noun Any theory that relates collisions among particles to reaction rate; reaction rate depends on such factors as concentration, surface area, temperature, stirring, and the presence of either a catalyst or an inhibitor …   Wiktionary

• collision-theory — adjective noun …   Wiktionary

• Collision frequency — Main article: Collision theory Collision frequency is defined in chemical kinetics, in the background of theoretical kinetics, as the average number of collisions between reacting molecules per unit of time. Its symbol is Z. For a gas phase… …   Wikipedia

• Collision Course (album) — Collision Course EP by Jay Z and Linkin Park Released November 30 …   Wikipedia

• Collision Course — Collision Course …   Википедия

• Collision Course — EP par Jay Z Linkin Park Sortie 29 novembre 2004 30 novembre 2004 …   Wikipédia en Français

• Collision — For other uses, see Collision (disambiguation). A collision is an isolated event which two or more moving bodies (colliding bodies) exert forces on each other for a relatively short time. Although the most common colloquial use of the word… …   Wikipedia

• Collision cascade — A classical molecular dynamics computer simulation of a collision cascade in Au induced by a 10 keV Au self recoil. This is a typical case of a collision cascade in the heat spike regime. Each small sphere illustrates the position of an atom, in… …   Wikipedia