Age of the universe


Age of the universe

The age of the universe is the time elapsed between the theory of the Big Bang and the present day. Current observations suggest that this is about 13.73 billion years, with an uncertainty of about +/-120 million years. The lowering of the uncertainty range has been obtained by the agreement of a number of science researcher projects. Scientific instruments and methods have improved the ability to measure the age of the universe with a great accuracy. These projects included: background radiation measurements and more ways to measure the expansion of the universe. Background radiation measurements give the cooling time of the universe since the big bang. Expansion of the universe measurements give accurate data to calculate the age of the universe.

Explanation

The Lambda-CDM concordance model describes the evolution of the universe from a very uniform, hot, dense primordial state to its present state over a span of about 13.7 billion years of cosmological time. This model is well understood theoretically and strongly supported by recent high-precision astronomical observations such as WMAP. In contrast, theories of the origin of the primordial state remain very speculative. The dominant theory, inflation, as well as the recent ekpyrotic scenario, suggest that the Big Bang cosmos that we observe may be a part of a larger universe with very different physical properties and with a history extending back longer than 13.7 billion years.

If one extrapolates the Lambda-CDM model backward from the earliest well-understood state, it quickly (within a small fraction of a second) reaches a mathematical singularity called the "Big Bang singularity." This singularity is not considered to have any physical significance, but it is convenient to quote times measured "since the Big Bang," even though they do not correspond to a physically measurable time. For example, "10−6 second after the Big Bang" is a well-defined era in the universe's evolution. In one sense it would be more meaningful to refer to the same era as "13.7 billion years minus 10−6 seconds ago," but this is unworkable since the latter time interval is swamped by uncertainty in the former.

Though the universe might in theory have a longer history, cosmologists presently use "age of the universe" to mean the duration of the Lambda-CDM expansion, or equivalently the elapsed time since the Big Bang.

Observational limits on the age of the universe

Since the universe must be at least as old as the oldest thing in it, there are a number of observations which put a lower limit on the age of the universe. These include the temperature of the coolest white dwarfs, and the turnoff point of the red dwarfs.

Age as a function of cosmological parameters

[


thumb|400px|The_age_of_the_universe_can_be_determined_by_measuring_the_Hubble constant today and extrapolating back in time with the observed value of density parameters (Ω). Before the discovery of dark energy, it was believed that the universe was matter-dominated, and so Ω on this graph corresponds to Omega_m. Note that the accelerating universe has the greatest age, while the Big Crunch universe has the smallest age.] The problem of determining the age of the universe is closely tied to the problem of determining the values of the cosmological parameters. Today this is largely carried out in the context of the ΛCDM model, where the Universe is assumed to contain normal (baryonic) matter, cold dark matter, radiation (including both photons and neutrinos), and a cosmological constant. The fractional contribution of each to the current energy density of the Universe is given by the density parameters Ω"m", Ω"r", and ΩΛ. The full ΛCDM model is described by a number of other parameters, but for the purpose of computing its age these three, along with the Hubble parameter "H"0 are the most important.

If one has accurate measurements of these parameters, then the age of the universe can be determined by using the Friedmann equation. This equation relates the rate of change in the scale factor "a"("t") to the matter content of the Universe. Turning this relation around, we can calculate the change in time per change in scale factor and thus calculate the total age of the universe by integrating this formula. The age "t"0 is then given by an expression of the form:t_0 = frac{1}{H_0} F(Omega_r,Omega_m,Omega_Lambda,dots) where the function "F" depends only on the fractional contribution to the universe's energy content that comes from various components. The first observation that one can make from this formula is that it is the Hubble parameter that controls that age of the universe, with a correction arising from the matter and energy content. So a rough estimate of the age of the universe comes from the inverse of the Hubble parameter, : frac{1}{H_0} = left( frac{H_0}{72; ext{km/(s}cdot ext{Mpc)} } ight)^{-1} imes 13.6 ; ext{Gyr}.

To get a more accurate number, the correction factor "F" must be computed. In general this must be done numerically, and the results for a range of cosmological parameter values are shown in the figure. For the WMAP values (Ω"m", Ω"r") = (0.266, 0.732), shown by the box in the upper left corner of the figure, this correction factor is nearly one: "F" = 0.996. For a flat universe without any cosmological constant, shown by the star in the lower right corner, "F" = 2/3 is much smaller and thus the universe is younger for a fixed value of the Hubble parameter. To make this figure, Ω"r" is held constant (roughly equivalent to holding the CMB temperature constant) and the curvature density parameter is fixed by the value of the other three.

The Wilkinson Microwave Anisotropy Probe (WMAP) was instrumental in establishing an accurate age of the universe, though other measurements must be folded in to gain an accurate number. CMB measurements are very good at constraining the matter content Ω"m" [citeweb|title=Animation: Matter Content Sensitivity. The matter-radiation ratio is raised while keeping all other parameters fixed (Omega_0h^2= 0.1-1) .|url=http://background.uchicago.edu/%7Ewhu/physics/anim2.html|publisher=uchicago.edu|accessdate=2008-02-23] and curvature parameter Ω"k".citeweb|title=Animation:Angular diameter distance scaling with curvature and lambda (Omega_K=1-Omega_0-Omega_Lambda, fixed Omega_0h^2 and Omega_Bh^2)|url=http://background.uchicago.edu/%7Ewhu/physics/anim3.html|publisher=uchicago.edu|accessdate=2008-02-23] It is not as sensitive to ΩΛ directly, partly because the cosmological constant only becomes important at low redshift. The most accurate determinations of the Hubble parameter "H"0 come from Type Ia supernovae. Combining these measurements leads to the generally accepted value for the age of the universe quoted above.

The cosmological constant makes the universe "older" for fixed values of the other parameters. This is significant, since before the cosmological constant became generally accepted, the Big Bang model had difficulty explaining why globular clusters in the Milky Way appeared to be far older than the age of the universe as calculated from the Hubble parameter and a matter-only universe. [citeweb|title=Globular Star Clusters|url=http://www.seds.org/messier/glob.html|publisher=seds.org|accessdate=2008-02-23] [citeweb|title=Independent age estimates|url=http://www.astro.ubc.ca/people/scott/bbage.html|publisher=astro.ubc.ca|accessdate=2008-02-23] Introducing the cosmological constant allows the universe to be older than these clusters, as well as explaining other features that the matter-only cosmological model could not. [citepaper|title=COSMIC CONCORDANCE|url=http://www.arxiv.org/abs/astro-ph/9505066|author=J. P. Ostriker|coauthors=Paul J. Steinhardt|accessdate=2008-02-23]

Age based on WMAP

NASA's Wilkinson Microwave Anisotropy Probe (WMAP) project estimates the age of the universe to be:: (13.73 ± 0.12) × 109 years.

That is, the universe is about 13.73 billion years old,cite web | title = Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results | url = http://lambda.gsfc.nasa.gov/product/map/dr3/pub_papers/fiveyear/basic_results/wmap5basic.pdf|publisher=nasa.gov|accessdate=2008-03-06] with an uncertainty of 120 million years. However, this age is based on the assumption that the project's underlying model is correct; other methods of estimating the age of the universe could give different ages. Assuming an extra background of relativistic particles, for example, can enlarge the error bars of the WMAP constraint by one order of magnitude. [citepaper|title=The Cosmic Neutrino Background and the age of the Universe|url=http://arxiv.org/abs/0707.4170v1|author=Francesco de Bernardis|coauthors= A. Melchiorri, L. Verde, R. Jimenez|accessdate=2008-02-23]

This measurement is made by using the location of the first acoustic peak in the microwave background power spectrum to determine the size of the decoupling surface (size of universe at the time of recombination). The light travel time to this surface (depending on the geometry used) yields a reliable age for the universe. Assuming the validity of the models used to determine this age, the residual accuracy yields a margin of error near one percent.cite journal | doi=10.1086/377226 | title = First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters | first = D. N. | last = Spergel | coauthors = et al. | journal = The Astrophysical Journal Supplement Series | volume = 148 | year = 2003 | pages = 175–194]

This is the value currently most quoted by astronomers.

Assumption of strong priors

Calculating the age of the universe is only accurate if the assumptions built into the models being used to estimate it are also accurate. This is referred to as strong priors and essentially involves stripping the potential errors in other parts of the model to render the accuracy of actual observational data directly into the concluded result. Although this is not a valid procedure in all contexts (as noted in the accompanying caveat: "based on the fact we have assumed the underlying model we used is correct"), the age given is thus accurate to the specified error (since this error represents the error in the instrument used to gather the raw data input into the model).

The age of the universe based on the "best fit" to WMAP data "only" is 13.69±0.13 Gyr (the slightly higher number of 13.73 includes some other data mixed in). This number represents the first accurate "direct" measurement of the age of the universe (other methods typically involve Hubble's law and age of the oldest stars in globular clusters, etc). It is possible to use different methods for determining the same parameter (in this case – the age of the universe) and arrive at different answers with no overlap in the "errors". To best avoid the problem, it is common to show two sets of uncertainties; one related to the actual measurement and the other related to the systematic errors of the model being used.

An important component to the analysis of data used to determine the age of the universe (e.g. from WMAP) therefore is to use a Bayesian Statistical analysis, which normalizes the results based upon the priors (i.e. the model). This quantifies any uncertainty in the accuracy of a measurement due to a particular model used. [cite paper | title = The Promise of Bayesian Inference for Astrophysics | url = http://astrosun.tn.cornell.edu/staff/loredo/bayes/promise.pdf | format = PDF | last = Loredo | first = T. J.|accessdate=2008-02-23] [cite journal | url = http://adsabs.harvard.edu/abs/2005IJMPD..14..775C | title = Bayesian Statistics and Parameter Constraints on the Generalized Chaplygin Gas Model Using SNe ia Data | last = Colistete | first = R. | coauthors = J. C. Fabris & S. V. B. Concalves | journal = International Journal of Modern Physics D | volume = 14 | issue = 5 | pages = 775–796 | year = 2005 | id = arxiv|archive=astro-ph|id=0409245|accessdate=2008-02-23 | doi = 10.1142/S0218271805006729 ]

See also

*Metric expansion of space
* Red shift observations in astronomy
*Observable universe
*Anthropic principle
*Cosmology
*Hubble Deep Field

References

External links

* [http://www.astro.ucla.edu/~wright/cosmolog.htm Ned Wright's Cosmology Tutorial]
*cite web | url = http://www.astro.ucla.edu/~wright/age.html | first = Edward L. | last = Wright | title = Age of the Universe | date = 2 July 2005
*Wayne Hu's [http://background.uchicago.edu/~whu/metaanim.html cosmological parameter animations]
*J. P. Ostriker and P. J. Steinhardt, [http://www.arxiv.org/abs/astro-ph/9505066 Cosmic Concordance] , arXiv:astro-ph/9505066.
*SEDS page on [http://www.seds.org/messier/glob.html "Globular Star Clusters"]
*Douglas Scott [http://www.astro.ubc.ca/people/scott/bbage.html "Independent Age Estimates"]
*KryssTal [http://www.krysstal.com/scale.html "The Scale of the Universe"] Space and Time scaled for the beginner.
* [http://icosmos.co.uk/ iCosmos: Cosmology Calculator (With Graph Generation )]


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Age of the Earth — This article is about scientific estimates of the age of the Earth. For religious and other non scientific estimates, see Dating Creation. Earth as seen from Apollo 17 The age of the Earth is 4.54 billion years (4.54 × 109 years ± 1%) …   Wikipedia

  • The Disappearance of the Universe — is a book written by Gary Renard and originally published by Fearless Books (2003), and later by Hay House (2004).[1][2] This book records seventeen contacts between Renard and two Ascended Masters whose last lifetime was in our future, named… …   Wikipedia

  • Age of the Five — is a trilogy of fantasy novels by Trudi Canavan, recounting the story of Auraya, a young priestess who rises to the highest rank in her world s religious hierarchy, only to find that there may be more to the Gods she worships than she was led to… …   Wikipedia

  • The Five Ages of the Universe — Infobox Book | name = The Five Ages of the Universe: Inside the Physics of Eternity image caption = Cover author = Fred Adams and Gregory Laughlin country = language = English genre = popular science publisher = Free Press Publishers release date …   Wikipedia

  • Shape of the Universe — Edge of the Universe redirects here. For the Bee Gees song, see Edge of the Universe (song). The local geometry of the universe is determined by whether Omega is less than, equal to or greater than 1. From top to bottom: a spherical universe, a… …   Wikipedia

  • Masters of the Universe — For the live action movie, see Masters of the Universe (film). For other uses, see Masters of the Universe (disambiguation). Masters of the Universe Publication information First appearance 1982[1] …   Wikipedia

  • Lord of the Universe — Infobox Film name = Lord of the Universe image size = 200px caption = 1991 VHS edition director = Top Value Television, Michael Shamberg producer = David Loxton, Top Value Television writer = music = cinematography = editing = John. J. Godfrey… …   Wikipedia

  • Stellvia of the Universe — Infobox animanga/Header name = Stellvia of the Universe caption = Shima (left) and Kouta piloting Infinity ja name = 宇宙のステルヴィア ja name trans = Uchū no Stellvia genre = Mecha, Coming of Age, RomanceInfobox animanga/Anime title = director = Tatsuo… …   Wikipedia

  • Heat death of the universe — For the album, see The Heat Death of the Universe. Physical cosmology Universe  …   Wikipedia

  • List of Masters of the Universe characters — The following is a list of the numerous characters within the Masters of the Universe animated series, film, toy lines, and spin offs. Contents 1 Heroic Warriors 1.1 Original characters 1.1.1 He Man/Prince Adam 1 …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.