MRNA display

MRNA display

mRNA display is a display technique used for "in vitro" protein, and/or peptide evolution to create molecules that can bind to a desired target. The process results in translated peptides or proteins that are associated with their mRNA progenitor via a puromycin linkage. The complex then binds to an immobilized target in a selection step (affinity chromatography). The mRNA-protein fusions that bind well are then reverse transcribed to cDNA and their sequence amplified via a polymerase chain reaction. The end result is a nucleotide sequence that encodes a peptide with high affinity for the molecule of interest.


Like many other biological display technologies that have been developed, such as phage display, yeast display, bacterial display, and ribosome display, mRNA display technology provides easily accessible coding information for each peptide/protein displayed. It does so by combining a pool of mRNA linked to their translated polypeptide products through a puromycin-DNA linker (Figure 1).

Puromycin is an analogue of the 3’ end of a tyrosyl-tRNA with a part of its structure mimics a molecule of adenosine, and the other part mimics a molecule of tyrosine. Compared to the cleavable ester bond in a tyrosyl-tRNA, puromycin has a non-hydrolysable amide bond. As a result, puromycin interferes with translation, and causes premature release of translation products.

All mRNA templates used for mRNA display technology have puromycin at their 3’ end. As translation proceeds, ribosome moves along the mRNA template, and once it reaches the 3’ end of the template, the fused puromycin will enter ribosome’s A site and be incorporated into the nascent peptide. The mRNA-polypeptide fusion is then released from the ribosome (Figure 2).

To synthesize an mRNA-polypeptide fusion, the fused puromycin is not the only modification to the mRNA template. Oligonucletides and other spacers need to be recruited along with the puromycin to provide flexibility and proper length for the puromycin to enter the A site. Idealy, the linker between the 3’ end of an mRNA and the puromycin has to be flexible and long enough to allow the puromycin to enter the A site upon translation of the last codon. This enables the efficient production of high-quality, full-length mRNA-polypeptide fusion. Rihe Liu "et al". did an excellent work to optimize the 3’-puromycin oligonucleotides. They have reported that dA25 in combination with a Spacer 9 (Glen Research), and dAdCdCP at the 5’ terminus worked the best for the fusion reaction. They found that linker longer than 40 nucleotides and shorter than 16 nucleotides showed a greatly reduced efficiency of fusion formation. Also, when the sequence rUrUP presented adjacent to the puromycin, fusion did not form efficiently [Liu, R., "et al"., Optimized synthesis of RNA-protein fusions for "in vitro" protein selection. Methods Enzymol, 2000. 318: p. 268-93.] .

In addition to providing flexibility and length, the poly dA portion of the linker also allows further purification of the mRNA-polypeptide fusion due to its high affinity for dT cellulose resin. The mRNA-polypeptide fusions can be selected over immobilized selection targets for several rounds with increasing stringency. After each round of selection, those library members that stay bound to the immobilized target are PCR amplified, and non-binders are washed off.


The synthesis of an mRNA display library starts from the synthesis of a DNA library. A DNA library for any protein or small peptide of interest can be synthesized by solid-phase synthesis followed by PCR amplification. Usually, each member of this DNA library has a T7 RNA polymerase transcription site and a ribosomal binding site at the 5’ end. The T7 promoter region allows large-scale "in vitro" T7 transcription to transcribe the DNA library into an mRNA library, which provides templates for the "in vitro" translation reaction later. The ribosomal binding site in the 5’-untranslated region (5’ UTR) is designed according to the "in vitro" translation system to be used. There are two popular commercially available "in vitro" translation systems. One is "E. Coli" S30 Extract System (Promega) that requires a Shine-Dalgarno sequence in the 5’ UTR as a ribosomal binding site; the other one is Red Nova Lysate (Novagen), which needs a ΔTMV ribosomal binding site.

Once the mRNA library is generated, it will be Urea-PAGE purified and ligated using T4 DNA ligase to the DNA spacer linker containing puromycin at the 3’ end. In this ligation step, a piece of mRNA is ligated with a single stranded DNA with the help from T4 DNA ligase. This is not a standard T4 DNA ligase ligation reaction, where two pieces of double stranded DNA are ligated together. To increase the yield of this special ligation, a single stranded DNA splint may be used to aid the ligation reaction. The 5’ terminus of the splint is designed to be complementary to the 3’ end of the mRNA, and the 3’ terminus of the splint is designed to be complementary to the 5’ end of the DNA spacer linker, which usually consists of poly dA nucleotides (Figure 3).

The ligated mRNA-DNA-puromycin library is translated in Red Nova Lysate (Novagen) or "E. Coli" S30 Extract System (Promega), resulting in polypeptides covalently linked "in cis" to the encoding mRNA. The "in vitro" translation can also be done in a PURE (protein synthesis using recombinant elements) system. PURE system is an "E. Coli" cell-free translation system in which only essential translation components are present. Some components, such as amino acids and aminoacyl-tRNA synthases (AARSs) can be omitted from the system. Instead, chemically acylated tRNA can be added into the PURE system. It has been shown that some unnatural amino acids, such as N-methyl-amino acid accylated tRNA can be incorporated into peptides or mRNA-polypeptide fusions in a PURE system [Kawakami, T., H. Murakami, and H. Suga, Messenger RNA-Programmed Incorporation of Multiple N-Methyl-Amino Acids into Linear and Cyclic Peptides. Chem Biol, 2008. 15(1): p. 32-42.] .

After translation, the single-stranded mRNA portions of the fusions will be converted to heteroduplex of RNA/DNA by reverse transcriptase to eliminate any unwanted RNA secondary structures, and render the nucleic acid portion of the fusion more stable. This step is a standard reverse transcription reaction. For instance, it can be done by using Superscript II (GIBCO-BRL) following the manufacturer’s protocol.

The mRNA/DNA-polypeptide fusions can be selected over immobilized selection targets for several rounds (Figure 4). There might be a relatively high background for the first few rounds of selection, and this can be minimized by increasing selection stringency, such as adjusting salt concentration, amount of detergent, and/or temperature during the target/fusion binding period. Following binding selection, those library members that stay bound to the immobilized target are PCR amplified. The PCR amplification step will enrich the population from the mRNA-display library that has higher affinity for the immobilized target. Error-prone PCR can also be done in between each round of selection to further increase the diversity of the mRNA-display library and reduce background in selection [Roberts, R.W. and J.W. Szostak, RNA-peptide fusions for the "in vitro" selection of peptides and proteins. Proc Natl Acad Sci U S A, 1997. 94(23): p. 12297-302.] .


Although there are many other molecular display technologies, such as phage display, bacterial display, yeast display, and ribosome display, mRNA display technology has many advantages over the others [Roberts, R.W., Totally "in vitro" protein selection using mRNA-protein fusions and ribosome display. Curr Opin Chem Biol, 1999. 3(3): p. 268-73.] . The first three biological display libraries listed have polypeptides or proteins expressed on the respective microorganism’s cell surface and the accompanying coding information for each polypeptide or protein is retrievable from the microorganism’s genome. However, the library size for these three "in vivo" display systems is limited by the transformation efficiency of each organism. For example, the library size for phage and bacterial display is limited to 1-10 × 10^9 different members. The library size for yeast display is even smaller. Moreover, these cell-based display system only allow the screening and enrichment of peptides/proteins containing natural amino acids. In contrast, mRNA display and ribosomse display are "in vitro" selection methods. They allow a library size as large as 10^15 different members. The large library size increases the probability to select very rare sequences, and also improves the diversity of the selected sequences. In addition, "in vitro" selection methods remove unwanted selection pressure, such as poor protein expression, and rapid protein degradation, which may reduce the diversity of the selected sequences. Finally, "in vitro" selection methods allow the application of "in vitro" mutagenesis and recombination techniques throughout the selection process.

Although both ribosome display and mRNA display are "in vitro" selection methods, mRNA display has some advantage over the ribosome display technology [Gold, L., mRNA display: diversity matters during" in vitro" selection. Proc Natl Acad Sci U S A, 2001. 98(9): p. 4825-6.] . mRNA display utilizes covalent mRNA-polypeptide complexes linked through puromycin; whereas, ribosome display utilizes stalled, noncovalent ribosome-mRNA-polypeptide complexes. For ribosome display, selection stringency is limited to keep ribosome-mRNA-polypeptide in a complex because of the noncovalent ribosome-mRNA-polypeptide complexes. This may cause difficulties in reducing background binding during the selection cycle. Also, the polypeptides under selection in a ribosome display system are attached to an enormous rRNA-protein complex, a ribosome, which has a molecular weight of more than 2,000,000 Da. There might be some unpredictable interaction between the selection target and the ribosome, and this may lead to a loss of potential binders during the selection cycle. In contrast, the puromycin DNA spacer linker used in mRNA display technology is much smaller comparing to a ribosome. This linker may have less chance to interact with an immobilized selection target. Thus, mRNA display technology is more likely to give less biased results.


In 1997, Roberts and Szostak showed that fusions between a synthetic mRNA and its encoded "myc" epitope could be enriched from a pool of random sequence mRNA-polypeptide fusions by immunoprecipitation [Roberts, R.W. and J.W. Szostak, RNA-peptide fusions for the "in vitro" selection of peptides and proteins. Proc Natl Acad Sci U S A, 1997. 94(23): p. 12297-302.] .

Nine years later, Fukuda and colleagues chose mRNA display method for "in vitro" evolution of single-chain Fv (scFv) antibody fragments [Fukuda, I., "et al"., "In vitro" evolution of single-chain antibodies using mRNA display. Nucleic Acids Res, 2006. 34(19): p. e127.] . They selected six different scFv mutants with five consensus mutations. However, kinetic analysis of these mutants showed that their antigen-specificity remained similar to that of the wild type. However, they have demonstrated that two of the five consensus mutations were within the complementarity determining regions (CDRs). And they concluded that mRNA display has the potential for rapid artificial evolution of high-affinity diagnostic and therapeutic antibodies by optimizing their CDRs.

Roberts and coworkers have demonstrated that unnatural peptide oligomers consisting of an N-substituted amino acid can be synthesized as mRNA-polypeptide fusions [Frankel, A., S.W. Millward, and R.W. Roberts, Encodamers: unnatural peptide oligomers encoded in RNA. Chem Biol, 2003. 10(11): p. 1043-50.] . N-substituted amino acid-containing peptides have been associated with good proteolytic stability and improved pharmacokinetic properties. This work indicates that mRNA display technology has the potential for selecting drug-like peptides for therapeutic usage resistant to proteolysis.


External links

* [ Richard W. Roberts Publications on mRNA display]
* [ Jack W. Szostak Publications on mRNA display]
* [ Rihe Liu Publications on mRNA display]
* [ Matthew Hartman Publications on mRNA display]

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Display — may refer to: Display (horse) (1923–1944), an American thoroughbred racehorse Display (zoology), a form of animal behaviour Display advertising, type that typically contains text, i.e., copy, logos, images, location maps, etc. Display case, also… …   Wikipedia

  • display — differential d. the use of RT PCR based technologies to amplify mRNA from specific cells or tissues and then to compare them directly with amplified mRNA from another cell or tissue …   Medical dictionary

  • Ribosome display — is a technique used to perform in vitro protein evolution to create proteins that can bind to a desired ligand. The process results in translated proteins that are associated with their mRNA progenitor which is used, as a complex, to bind to an… …   Wikipedia

  • Phage display — is a method for the study of protein protein, protein peptide, and protein DNA interactions that utilizes bacteriophage to connect proteins with the genetic information that encodes them.cite journal |author=Smith GP |title= Filamentous fusion… …   Wikipedia

  • Yeast display — (or yeast surface display) is a technique used in the field of protein engineering. The yeast display technique was first published by the laboratory of Professor K. Dane Wittrup. [ [… …   Wikipedia

  • Bacterial display — (or bacteria display or bacterial surface display) is a protein engineering technique used for in vitro protein evolution. Libraries of polypeptides displayed on the surface of bacteria can be screened using flow cytometry or iterative selection… …   Wikipedia

  • Differential display — (also referred to as DDRT PCR or DD PCR) is the technique where a researcher can compare and identify changes in gene expression at the mRNA level between any pair of eukaryotic cell samples. The assay may be extended to more than one pair, if… …   Wikipedia

  • Phagen-Display — Das Phagen Display (engl. phage display) ist eine biotechnologische Methode bei der aus großen, rekombinanten Bibliotheken Peptide, Proteinteile (z. B. Antikörperfragmente) oder komplette Proteine funktionell auf der Oberfläche von Bakteriophagen …   Deutsch Wikipedia

  • differential display PCR — Variation of the polymerase chain reaction used to identify differentially expressed genes. mRNA from two different tissue samples is reverse transcribed, then amplified using short, intentionally nonspecific primers. The array of bands obtained… …   Dictionary of molecular biology

  • Northern blot — The northern blot is a technique used in molecular biology research to study gene expression by detection of RNA (or isolated mRNA) in a sample.[1][2] …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.