- State space (controls)
In

control engineering , a**state space representation**is a mathematical model of a physical system as a set of input, output and state variables related by first-orderdifferential equation s. To abstract from the number of inputs, outputs and states, the variables are expressed as vectors and the differential and algebraic equations are written in matrix form (the last one can be done when thedynamical system is linear and time invariant). The state space representation (also known as the "time-domain approach") provides a convenient and compact way to model and analyze systems with multiple inputs and outputs. With $p$ inputs and $q$ outputs, we would otherwise have to write down $q\; imes\; p$Laplace transform s to encode all the information about a system. Unlike the frequency domain approach, the use of the state space representation is not limited to systems with linear components and zero initial conditions. "State space" refers to the space whose axes are the state variables. The state of the system can be represented as a vector within that space.**State variables**The internal

state variable s are the smallest possible subset of system variables that can represent the entire state of the system at any given time. State variables must be linearly independent; a state variable cannot be a linear combination of other state variables. The minimum number of state variables required to represent a given system, $n$, is usually equal to the order of the system's defining differential equation. If the system is represented in transfer function form, the minimum number of state variables is equal to the order of the transfer function's denominator after it has been reduced to a proper fraction. It is important to understand that converting a state space realization to a transfer function form may lose some internal information about the system, and may provide a description of a system which is stable, when the state-space realization is unstable at certain points. In electric circuits, the number of state variables is often, though not always, the same as the number of energy storage elements in the circuit such as capacitors and inductors.**Linear systems**The most general state space representation of a linear system with $p$ inputs, $q$ outputs and $n$ state variables is written in the following form:: $dot\{mathbf\{x(t)\; =\; A(t)\; mathbf\{x\}(t)\; +\; B(t)\; mathbf\{u\}(t)$: $mathbf\{y\}(t)\; =\; C(t)\; mathbf\{x\}(t)\; +\; D(t)\; mathbf\{u\}(t)$where: $x(t)\; in\; mathbb\{R\}^n$; $y(t)\; in\; mathbb\{R\}^q$; $u(t)\; in\; mathbb\{R\}^p$; : $operatorname\{dim\}\; [A(cdot)]\; =\; n\; imes\; n$,: $operatorname\{dim\}\; [B(cdot)]\; =\; n\; imes\; p$,: $operatorname\{dim\}\; [C(cdot)]\; =\; q\; imes\; n$,: $operatorname\{dim\}\; [D(cdot)]\; =\; q\; imes\; p$,: $dot\{mathbf\{x(t)\; :=\; \{dmathbf\{x\}(t)\; over\; dt\}$.

$x(cdot)$ is called the "state vector", $y(cdot)$ is called the "output vector", $u(cdot)$ is called the "input (or control) vector", $A(cdot)$ is the "state matrix", $B(cdot)$ is the "input matrix", $C(cdot)$ is the "output matrix", and $D(cdot)$ is the "feedthrough (or feedforward) matrix". For simplicity, $D(cdot)$ is often chosen to be the zero matrix, i.e. the system is chosen not to have direct feedthrough. Notice that in this general formulation all matrices are supposed to be time-variant, i.e. some or all their elements can depend on time. The time variable $t$ can be a "continuous" one (i.e. $t\; in\; mathbb\{R\}$) or a discrete one (i.e. $t\; in\; mathbb\{Z\}$): in the latter case the time variable is usually indicated as $k$. Depending on the assumptions taken, the state-space model representation can assume the following forms:

Stability and natural response characteristics of a system can be studied from the

eigenvalue s of the matrix**A**. The stability of a time-invariant state-space model can easily be determined by looking at the system'stransfer function in factored form. It will then look something like this::$extbf\{G\}(s)\; =\; k\; frac\{\; (s\; -\; z\_\{1\})(s\; -\; z\_\{2\})(s\; -\; z\_\{3\})\; \}\{\; (s\; -\; p\_\{1\})(s\; -\; p\_\{2\})(s\; -\; p\_\{3\})(s\; -\; p\_\{4\})\; \}$The denominator of the transfer function is equal to the

characteristic polynomial found by taking thedeterminant of $sI\; -\; A$,: $mathbf\{lambda\}(s)\; =\; |sI\; -\; A|$.The roots of this polynomial (theeigenvalue s) yield the poles in the system's transfer function. These poles can be used to analyze whether the system is asymptotically stable or marginally stable. An alternative approach to determining stability, which does not involve calculating eigenvalues, is to analyze the system'sLyapunov stability .The zeros found in the numerator of $extbf\{G\}(s)$ can similarly be used to determine whether the system isminimum phase .The system may still be

**input-output stable**(see BIBO stable) even though it is not internally stable. This may be the case if unstable poles are canceled out by zeros.**Controllability**Thus state controllability condition implies that it is possible - by admissible inputs - to steer the states from any initial value to any final value within some time window. A continuous time-invariant state-space model is

**controllable**if and only if:$operatorname\{rank\}egin\{bmatrix\}B\; AB\; A^\{2\}B\; ...\; A^\{n-1\}Bend\{bmatrix\}\; =\; n$**Observability**Observability is a measure for how well internal states of a system can be inferred by knowledge of its external outputs. The observability and controllability of a system are mathematical duals.

A continuous time-invariant state-space model is

**observable**if and only if:$operatorname\{rank\}egin\{bmatrix\}C\backslash \; CA\backslash \; ...\backslash \; CA^\{n-1\}end\{bmatrix\}\; =\; n$(Rank is the number of linearly independent rows in a matrix.)**Transfer function**The "

transfer function " of a continuous time-invariant state-space model can be derived in the following way:First, taking the

laplace transform of :$dot\{mathbf\{x(t)\; =\; A\; mathbf\{x\}(t)\; +\; B\; mathbf\{u\}(t)$ yields:$smathbf\{X\}(s)\; =\; A\; mathbf\{X\}(s)\; +\; B\; mathbf\{U\}(s)$Next, we simplify for $mathbf\{X\}(s)$, giving:$(smathbf\{I\}\; -\; A)mathbf\{X\}(s)\; =\; Bmathbf\{U\}(s)$:$mathbf\{X\}(s)\; =\; (smathbf\{I\}\; -\; A)^\{-1\}Bmathbf\{U\}(s)$this is substituted for $mathbf\{X\}(s)$ in the output equation

:$mathbf\{Y\}(s)\; =\; Cmathbf\{X\}(s)\; +\; Dmathbf\{U\}(s)$, giving:$mathbf\{Y\}(s)\; =\; C((smathbf\{I\}\; -\; A)^\{-1\}Bmathbf\{U\}(s))\; +\; Dmathbf\{U\}(s)$

Since the

transfer function $mathbf\{G\}(s)$ is defined as the ratio of the output to the input of a system, we take:$mathbf\{G\}(s)\; =\; mathbf\{Y\}(s)\; /\; mathbf\{U\}(s)$and substitute the previous expression for $mathbf\{Y\}(s)$ with respect to $mathbf\{U\}(s)$, giving:$mathbf\{G\}(s)\; =\; C(smathbf\{I\}\; -\; A)^\{-1\}B\; +\; D$Clearly $mathbf\{G\}(s)$ must have $q$ by $p$ dimensionality, and thus has a total of $qp$ elements.So for every input there are $q$ transfer functions with one for each output.This is why the state-space representation can easily be the preferred choice for multiple-input, multiple-output (MIMO) systems.**Canonical realizations**Any given transfer function which is

strictly proper can easily be transferred into state-space by the following approach:Given a transfer function, expand it to reveal all coefficients in both the numerator and denominator. This should result in the following form::$extbf\{G\}(s)\; =\; frac\{n\_\{1\}s^\{3\}\; +\; n\_\{2\}s^\{2\}\; +\; n\_\{3\}s\; +\; n\_\{4\{s^\{4\}\; +\; d\_\{1\}s^\{3\}\; +\; d\_\{2\}s^\{2\}\; +\; d\_\{3\}s\; +\; d\_\{4$.

The coefficients can now be inserted directly into the state-space model by the following approach::$dot\{\; extbf\{x(t)\; =\; egin\{bmatrix\}\; -d\_\{1\}\; -d\_\{2\}\; -d\_\{3\}\; -d\_\{4\}\backslash \; 1\; 0\; 0\; 0\backslash \; 0\; 1\; 0\; 0\backslash \; 0\; 0\; 1\; 0\; end\{bmatrix\}\; extbf\{x\}(t)\; +\; egin\{bmatrix\}\; 1\backslash \; 0\backslash \; 0\backslash \; 0\backslash \; end\{bmatrix\}\; extbf\{u\}(t)$

:$extbf\{y\}(t)\; =\; egin\{bmatrix\}\; n\_\{1\}\; n\_\{2\}\; n\_\{3\}\; n\_\{4\}\; end\{bmatrix\}\; extbf\{x\}(t)$.

This state-space realization is called

**controllable canonical form**because the resulting model is guaranteed to be controllable.The transfer function coefficients can also be used to construct another type of canonical form:$dot\{\; extbf\{x(t)\; =\; egin\{bmatrix\}\; -d\_\{1\}\; 1\; 0\; 0\backslash \; -d\_\{2\}\; 0\; 1\; 0\backslash \; -d\_\{3\}\; 0\; 0\; 1\backslash \; -d\_\{4\}\; 0\; 0\; 0\; end\{bmatrix\}\; extbf\{x\}(t)\; +\; egin\{bmatrix\}\; n\_\{1\}\backslash \; n\_\{2\}\backslash \; n\_\{3\}\backslash \; n\_\{4\}\; end\{bmatrix\}\; extbf\{u\}(t)$

:$extbf\{y\}(t)\; =\; egin\{bmatrix\}\; 1\; 0\; 0\; 0\; end\{bmatrix\}\; extbf\{x\}(t)$.

This state-space realization is called

**observable canonical form**because the resulting model is guaranteed to be observable.**Proper transfer functions**Transfer functions which are only proper (and not

strictly proper ) can also be realised quite easily. The trick here is to separate the transfer function into two parts: a strictly proper part and a constant. :$extbf\{G\}(s)\; =\; extbf\{G\}\_\{SP\}(s)\; +\; extbf\{G\}(infty)$The strictly proper transfer function can then be transformed into a canonical state space realization using techniques shown above. The state space realization of the constant is trivially $extbf\{y\}(t)\; =\; extbf\{G\}(infty)\; extbf\{u\}(t)$. Together we then get a state space realization with matrices "A","B" and "C" determined by the strictly proper part, and matrix "D" determined by the constant.Here is an example to clear things up a bit::$extbf\{G\}(s)\; =\; frac\{s^\{2\}\; +\; 3s\; +\; 3\}\{s^\{2\}\; +\; 2s\; +\; 1\}\; =\; frac\{s\; +\; 2\}\{s^\{2\}\; +\; 2s\; +\; 1\}\; +\; 1$which yields the following controllable realization:$dot\{\; extbf\{x(t)\; =\; egin\{bmatrix\}\; -2\; -1\backslash \; 1\; 0\backslash \; end\{bmatrix\}\; extbf\{x\}(t)\; +\; egin\{bmatrix\}\; 1\backslash \; 0end\{bmatrix\}\; extbf\{u\}(t)$

:$extbf\{y\}(t)\; =\; egin\{bmatrix\}\; 1\; 2end\{bmatrix\}\; extbf\{x\}(t)\; +\; egin\{bmatrix\}\; 1end\{bmatrix\}\; extbf\{u\}(t)$Notice how the output also depends directly on the input. This is due to the $extbf\{G\}(infty)$ constant in the transfer function.

**Feedback**A common method for feedback is to multiply the output by a matrix "K" and setting this as the input to the system: $mathbf\{u\}(t)\; =\; K\; mathbf\{y\}(t)$.Since the values of "K" are unrestricted the values can easily be negated for

negative feedback .The presence of a negative sign (the common notation) is merely a notational one and its absence has no impact on the end results.: $dot\{mathbf\{x(t)\; =\; A\; mathbf\{x\}(t)\; +\; B\; mathbf\{u\}(t)$: $mathbf\{y\}(t)\; =\; C\; mathbf\{x\}(t)\; +\; D\; mathbf\{u\}(t)$

becomes

: $dot\{mathbf\{x(t)\; =\; A\; mathbf\{x\}(t)\; +\; B\; K\; mathbf\{y\}(t)$: $mathbf\{y\}(t)\; =\; C\; mathbf\{x\}(t)\; +\; D\; K\; mathbf\{y\}(t)$

solving the output equation for $mathbf\{y\}(t)$ and substituting in the state equation results in

: $dot\{mathbf\{x(t)\; =\; left(A\; +\; B\; K\; left(I\; -\; D\; K\; ight)^\{-1\}\; C\; ight)\; mathbf\{x\}(t)$: $mathbf\{y\}(t)\; =\; left(I\; -\; D\; K\; ight)^\{-1\}\; C\; mathbf\{x\}(t)$

The advantage of this is that the

eigenvalues of "A" can be controlled by setting "K" appropriately through eigendecomposition of $left(A\; +\; B\; K\; left(I\; -\; D\; K\; ight)^\{-1\}\; C\; ight)$.This assumes that the open-loop system is controllable or that the unstable eigenvalues of "A" can be made stable through appropriate choice of "K".One fairly common simplification to this system is removing "D" and setting "C" to identity, which reduces the equations to

: $dot\{mathbf\{x(t)\; =\; left(A\; +\; B\; K\; ight)\; mathbf\{x\}(t)$: $mathbf\{y\}(t)\; =\; mathbf\{x\}(t)$

This reduces the necessary eigendecomposition to just $A\; +\; B\; K$.

**Feedback with setpoint (reference) input**In addition to feedback, an input, $r(t)$, can be added such that $mathbf\{u\}(t)\; =\; -K\; mathbf\{y\}(t)\; +\; mathbf\{r\}(t)$.

: $dot\{mathbf\{x(t)\; =\; A\; mathbf\{x\}(t)\; +\; B\; mathbf\{u\}(t)$: $mathbf\{y\}(t)\; =\; C\; mathbf\{x\}(t)\; +\; D\; mathbf\{u\}(t)$

becomes

: $dot\{mathbf\{x(t)\; =\; A\; mathbf\{x\}(t)\; -\; B\; K\; mathbf\{y\}(t)\; +\; B\; mathbf\{r\}(t)$: $mathbf\{y\}(t)\; =\; C\; mathbf\{x\}(t)\; -\; D\; K\; mathbf\{y\}(t)\; +\; D\; mathbf\{r\}(t)$

solving the output equation for $mathbf\{y\}(t)$ and substituting in the state equation results in

: $dot\{mathbf\{x(t)\; =\; left(A\; -\; B\; K\; left(I\; +\; D\; K\; ight)^\{-1\}\; C\; ight)\; mathbf\{x\}(t)\; +\; B\; left(I\; -\; K\; left(I\; +\; D\; K\; ight)^\{-1\}D\; ight)\; mathbf\{r\}(t)$: $mathbf\{y\}(t)\; =\; left(I\; +\; D\; K\; ight)^\{-1\}\; C\; mathbf\{x\}(t)\; +\; left(I\; +\; D\; K\; ight)^\{-1\}\; D\; mathbf\{r\}(t)$

One fairly common simplification to this system is removing "D", which reduces the equations to

: $dot\{mathbf\{x(t)\; =\; left(A\; -\; B\; K\; C\; ight)\; mathbf\{x\}(t)\; +\; B\; mathbf\{r\}(t)$: $mathbf\{y\}(t)\; =\; C\; mathbf\{x\}(t)$

**Moving object example**A classical linear system is that of one-dimensional movement of an object.The

Newton's laws of motion for an object moving horizontally on a plane and attached to a wall with a spring:$m\; ddot\{y\}(t)\; =\; u(t)\; -\; k\_1\; dot\{y\}(t)\; -\; k\_2\; y(t)$

where

*$y(t)$ is position; $dot\; y(t)$ is velocity; $ddot\{y\}(t)$ is acceleration

*$u(t)$ is an applied force

*$k\_1$ is the viscous friction coefficient

*$k\_2$ is the spring constant

*$m$ is the mass of the objectThe state equation would then become

:$left\; [\; egin\{matrix\}\; mathbf\{dot\{x\_1(t)\; \backslash \; mathbf\{dot\{x\_2(t)\; end\{matrix\}\; ight]\; =\; left\; [\; egin\{matrix\}\; 0\; 1\; \backslash \; -frac\{k\_2\}\{m\}\; -frac\{k\_1\}\{m\}\; end\{matrix\}\; ight]\; left\; [\; egin\{matrix\}\; mathbf\{x\_1\}(t)\; \backslash \; mathbf\{x\_2\}(t)\; end\{matrix\}\; ight]\; +\; left\; [\; egin\{matrix\}\; 0\; \backslash \; frac\{1\}\{m\}\; end\{matrix\}\; ight]\; mathbf\{u\}(t)$:$mathbf\{y\}(t)\; =\; left\; [\; egin\{matrix\}\; 1\; 0\; end\{matrix\}\; ight]\; left\; [\; egin\{matrix\}\; mathbf\{x\_1\}(t)\; \backslash \; mathbf\{x\_2\}(t)\; end\{matrix\}\; ight]$

where

*$x\_1(t)$ represents the position of the object

*$x\_2(t)\; =\; dot\{x\_1\}(t)$ is the velocity of the object

*$dot\{x\_2\}(t)\; =\; ddot\{x\_1\}(t)$ is the acceleration of the object

*the output $mathbf\{y\}(t)$ is the position of the objectThe

controllability test is then:$left\; [\; egin\{matrix\}\; B\; AB\; end\{matrix\}\; ight]\; =\; left\; [\; egin\{matrix\}\; left\; [\; egin\{matrix\}\; 0\; \backslash \; frac\{1\}\{m\}\; end\{matrix\}\; ight]\; left\; [\; egin\{matrix\}\; 0\; 1\; \backslash \; -frac\{k\_2\}\{m\}\; -frac\{k\_1\}\{m\}\; end\{matrix\}\; ight]\; left\; [\; egin\{matrix\}\; 0\; \backslash \; frac\{1\}\{m\}\; end\{matrix\}\; ight]\; end\{matrix\}\; ight]\; =\; left\; [\; egin\{matrix\}\; 0\; frac\{1\}\{m\}\; \backslash \; frac\{1\}\{m\}\; frac\{k\_1\}\{m^2\}\; end\{matrix\}\; ight]$

which has full rank for all $k\_1$ and $m$.

The

observability test is then:$left\; [\; egin\{matrix\}\; C\; \backslash \; CA\; end\{matrix\}\; ight]\; =\; left\; [\; egin\{matrix\}\; left\; [\; egin\{matrix\}\; 1\; 0\; end\{matrix\}\; ight]\; \backslash \; left\; [\; egin\{matrix\}\; 1\; 0\; end\{matrix\}\; ight]\; left\; [\; egin\{matrix\}\; 0\; 1\; \backslash \; -frac\{k\_2\}\{m\}\; -frac\{k\_1\}\{m\}\; end\{matrix\}\; ight]\; end\{matrix\}\; ight]\; =\; left\; [\; egin\{matrix\}\; 1\; 0\; \backslash \; 0\; 1\; end\{matrix\}\; ight]$

which also has full rank.Therefore, this system is both controllable and observable.

**Nonlinear systems**The more general form of a state space model can be written as two functions.

:$mathbf\{dot\{x(t)\; =\; mathbf\{f\}(t,\; x(t),\; u(t))$:$mathbf\{y\}(t)\; =\; mathbf\{h\}(t,\; x(t),\; u(t))$

The first is the state equation and the latter is the output equation.If the function $f(cdot,cdot,cdot)$ is a linear combination of states and inputs then the equations can be written in matrix notation like above.The $u(t)$ argument to the functions can be dropped if the system is unforced (i.e., it has no inputs).

**Pendulum example**A classic nonlinear system is a simple unforced

pendulum :$mlddot\; heta(t)=\; -mgsin\; heta(t)\; -\; kldot\; heta(t)$

where

*$heta(t)$ is the angle of the pendulum with respect to the direction of gravity

*$m$ is the mass of the pendulum (pendulum rod's mass is assumed to be zero)

*$g$ is the gravitational acceleration

*$k$ is coefficient of friction at the pivot point

*$l$ is the radius of the pendulum (to the center of gravity of the mass $m$)The state equations are then:$dot\{x\_1\}(t)\; =\; x\_2(t)$:$dot\{x\_2\}(t)\; =\; -\; frac\{g\}\{l\}sin\{x\_1\}(t)\; -\; frac\{k\}\{m\}\{x\_2\}(t)$

where

*$x\_1(t):=\; heta(t)$ is the angle of the pendulum

*$x\_2(t)\; :=dot\{x\_1\}(t)$ is the rotational velocity of the pendulum

*$dot\{x\_2\}\; =ddot\{x\_1\}$ is the rotational acceleration of the pendulumInstead, the state equation can be written in the general form

:$dot\{x\}(t)\; =\; left(\; egin\{matrix\}\; dot\{x\_1\}(t)\; \backslash \; dot\{x\_2\}(t)\; end\{matrix\}\; ight)\; =\; mathbf\{f\}(t,\; x(t))\; =\; left(\; egin\{matrix\}\; x\_2(t)\; \backslash \; -\; frac\{g\}\{l\}sin\{x\_1\}(t)\; -\; frac\{k\}\{m\}\{x\_2\}(t)\; end\{matrix\}\; ight).$

The equilibrium/

stationary point s of a system are when $dot\{x\}\; =\; 0$ and so the equilibrium points of a pendulum are those that satisfy:$left(\; egin\{matrix\}\; x\_1\; \backslash \; x\_2\; end\{matrix\}\; ight)\; =\; left(\; egin\{matrix\}\; npi\; \backslash \; 0\; end\{matrix\}\; ight)$

for integers "n".

**References*** Chen, Chi-Tsong 1999. "Linear System Theory and Design", 3rd. ed., Oxford University Press (ISBN 0-19-511777-8)

* Khalil, Hassan K. "Nonlinear Systems", 3rd. ed., Prentice Hall (ISBN 0-13-067389-7)

* Nise, Norman S. 2004. "Control Systems Engineering", 4th ed., John Wiley & Sons, Inc. (ISBN 0-471-44577-0)

* Hinrichsen, Diederich and Pritchard, Anthony J. 2005. "Mathematical Systems Theory I, Modelling, State Space Analysis, Stability and Robustness". Springer. (ISBN 978-3-540-44125-0)

* Sontag, Eduardo D. 1999. "Mathematical Control Theory: Deterministic Finite Dimensional Systems. Second Edition". Springer. (ISBN 0-387-984895) ( [*http://www.math.rutgers.edu/~sontag/FTP_DIR/sontag_mathematical_control_theory_springer98.pdf available free online*] )On the applications of state space models in econometrics:

* Durbin, J. and S. Koopman (2001). "Time series analysis by state space methods". Oxford University Press, Oxford.

**See also***

Control engineering

*Control theory

*State observer

*Discretization of state space models*

Phase space for information about phase state (like state space) in physics and mathematics.

*State space for information about state space with discrete states in computer science.

*State space (physics) for information about state space in physics.

*Wikimedia Foundation.
2010.*

### Look at other dictionaries:

**State space (dynamical system)**— In the theory of discrete dynamical systems, a state space is a directed graph where each possible state of a dynamical system is represented by a vertex, and there is a directed edge from a to b if and only if ƒ(a) = b where the… … Wikipedia**State space**— In computer science, a state space is a description of a configuration of discrete states used as a simple model of machines. Formally, it can be defined as a tuple [N, A, S, G] where: * N is a set of states * A is a set of arcs connecting the… … Wikipedia**State space (physics)**— In physics, a state space is a complex Hilbert space within which the possible instantaneous states of the system may be described by a unit vector. These state vectors, using Dirac s bra ket notation, can often be treated as vectors and operated … Wikipedia**State variable**— A state variable is an element of the set of variables that describe the state of a dynamical system.In case of simple mechanical systems, position coordinates and their derivates are typical state variables. Temperature, pressure, internal… … Wikipedia**State (controls)**— In control theory, states are what characterize a system. With linear systems states are not unique, but can be transformed into equivalent states using certain linear transformations.ee also*State space (controls) … Wikipedia**State Council of the People's Republic of China**— 中华人民共和国国务院 Zhōnghuá Rénmín Gònghéguó Guówùyuàn … Wikipedia**State (polity)**— This article is about the general concept of the state. For the subjects of international law, see Sovereign state. For other uses, see State (disambiguation). The frontispiece of Thomas Hobbes Leviathan A state is an organised political… … Wikipedia**State (disambiguation)**— State or The State may refer to:Government* A sovereign political entity ** State ** Unitary state ** Nation state ** State (law), a well defined jurisdiction, with its own set of laws and courts. *State (country subdivision), a non sovereign… … Wikipedia**Space Shuttle Solid Rocket Booster**— The Space Shuttle Solid Rocket Boosters (SRBs) are the pair of large solid rockets used by the Space Shuttle during the first two minutes of powered flight. They are located on either side of the orange external propellant tank. Each SRB produces … Wikipedia**Space-based solar power**— Left: Part of the solar energy is lost on its way through the atmosphere by the effects of reflection and absorption. Right: Space based solar power systems convert sunlight to microwaves outside the atmosphere, avoiding these losses, and the… … Wikipedia